
3514  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 12, DECEMBER 2020

Manuscript received 18 May 2020; revised 26 July 2020; accepted 17 Aug. 2020.
Date of publication 17 Sept. 2020; date of current version 3 Nov. 2020.
Digital Object Identifier no. 10.1109/TVCG.2020.3023635

Fine-Grained Visual Recognition in Mobile Augmented Reality for
Technical Support
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Fig. 1. Fine-grained visual recognition for augmented reality enables dynamic presentation of right set of visual instructions in the right
context by analyzing the hardware state as the repair procedure evolves.

Abstract— Augmented Reality is increasingly explored as the new medium for two-way remote collaboration applications to guide
the participants more effectively and efficiently via visual instructions. As users strive for more natural interaction and automation
in augmented reality applications, new visual recognition techniques are needed to enhance the user experience. Although simple
object recognition is often used in augmented reality towards this goal, most collaboration tasks are too complex for such recognition
algorithms to suffice. In this paper, we propose a fine-grained visual recognition approach for mobile augmented reality, which leverages
RGB video frames and sparse depth feature points identified in real-time, as well as camera pose data to detect various visual states of
an object. We demonstrate the value of our approach through a mobile application designed for hardware support, which automatically
detects the state of an object to present the right set of information in the right context.

Index Terms—Visual recognition, augmented reality, mobile

1 INTRODUCTION

Augmented Reality (AR) enhances the perception of our surroundings
by overlaying media and graphics on top of what we see in the real
world. Over the last decade, we have seen major progress and increased
interest in AR thanks to AR SDKs, such as ARKit [5] and ARCore [9],
which helped lower the barrier for entry for AR development. Recently,
intelligent AR systems driven by Artificial Intelligence (AI) are be-
ginning to emerge to enhance the AR experiences [3, 32]. Despite
this progress, most AR user experiences remain primitive, and lack
intelligence and automation, thereby rendering the user interaction
rather unintuitive. Although AR enables tracking of virtual objects and
annotations in physical spaces through computer vision techniques, it
is not inherently intelligent to actually recognize semantics of what
it sees. For example, in the technical support domain, traditional AR
solutions can recognize a desktop motherboard in the form of a point
cloud to enable tracked annotations on top of the hardware, but it does
not necessarily know that it is looking at a motherboard. Nor would
such system be able to understand if a desktop computer’s cover was
open or closed, or that the motherboard has its fan removed, or a spe-
cific connector unplugged and so on (Figure 1). The lack of semantic,

• Bing Zhou is with IBM T. J. Watson Research Center, Yorktown Heights,
New York, United States. E-mail: bing.zhou@ibm.com.
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fine-grained recognition requires all interaction to be driven by the
user by identifying what they are looking at (e.g., through pre-labelling
objects, specifying the state of an object, etc.) before they can have the
relevant AR content projected to their view, and thereby significantly
limits the interaction.

To address this gap and provide enriched AR user experiences, more
fine-grained visual recognition, i.e., recognizing not only objects but
also the visual state change of an object (or its parts), is desirable
in a wide range of application scenarios, including technical support.
However, there are various challenges associated with providing such
fine-grained visual recognition capabilities. For example, Figure 2
shows images of a computer under repair. In this example, the tech-
nician is replacing the CPU of this computer. To render the relevant
AR instructions in the right context, the visual recognition mechanism
should be able to detect the state change of a part of this computer -
the motherboard. Only when both the battery and the fan are removed
from the motherboard, should the AR instructions for CPU removal
be rendered. Compared to traditional visual recognition methods [11],
implementing such state recognition requires addressing the following
challenges in an AR application: i) Camera Distance: Depending on
the target object or object parts that need to be recognized, the machine
learning model requires the camera to be at varying distance to the
object. For example, in Figure 2(a), in order to recognize the whole
machine in the camera field of view (FoV), the camera needs to be
far away from the machine, while to recognize the battery, the camera
needs to be closer to the machine. This requires our solution to adjust
camera distance dynamically to achieve fine-grained visual recognition.
ii) Viewing Angle: The relevant target object parts need to be visible
to be recognized. This means that the camera must capture the object
at a certain angle. Figure 2(b) shows the machine being viewed from
a particular angle where the battery is occluded by wires, whereas in

Fig. 2. Example images of a computer from different viewing angles
during a repair session.

Figure 2(c), the battery is clearly visible. Unless we maintain a proper
viewing angle, visual recognition naturally results in poor accuracy. iii)
Noisy Input: As shown in Figure 2(d), a common challenge in AR-
driven hardware support is that the object may be temporally occluded
by the user’s hand or tools. It is also common that the input images
are captured by a moving camera, hence can be blurry at times. All
these factors make input images noisy for the visual recognition model.
So our solution needs to be robust in dealing with such noisy input,
while providing reliable and stable recognition results. In addition to
the challenges above, our solution must be designed to work within the
resource and power constraints of mobile devices.

The ideal solution mimics the process of human perception and
reasoning: to detect state changes, it enables the camera to focus on
discrete local areas that change appearance in different states; prompts
the user to adjust to proper viewing angles to collect images from these
local areas, and makes prediction on state change only when sufficient
visual data is collected. Unfortunately, most existing visual recognition
solutions [11, 30] are trained and evaluated using static image data
sets [8], and do not explicitly account for varying camera distance,
viewing angle and specific local areas.

We propose a solution that takes advantage of AR specific data,
such as real-time generated 3D feature points and camera pose, to
complement the images captured by the camera for fine-grained visual
recognition. We first use a set of training videos and learn Regions
of Interest (RoIs), which have appearance changes that distinguish
different states. We actively track the 6-DOF camera pose to ensure
that the camera is kept at the right distance and viewing angle to the
RoIs, minimize occlusions or other noise to the input images of the
visual recognition model. To improve the robustness of recognition,
we develop a discrete multi-stream Convolutional Neural Network
(CNN) [19], in conjunction with bi-directional Long Short Term Mem-
ory (LSTM) [12], namely a Discrete-CNN-LSTM (DCL) model, to
extract not only spatial, but also temporal data to predict state changes.
In summary, our paper makes the following novel contributions:

• We study the unique problem of fine-grained visual recognition
in a mobile AR setting, and propose to combine image, 3D fea-
ture point and camera pose data to actively predict object state
changes.

• We generate RoI candidates from merged 3D feature points col-
lected from AR sessions, and extract distinguishable RoIs au-
tomatically using deep CNN feature representations, which are
tracked and cropped for fine-grained recognition.

• We propose Discrete-CNN-LSTM (DCL) model, which dis-
tributes RoI images on discrete multi-stream CNN branches and

aggregates information with bi-directional LSTM layers. Multi-
stream CNN with shared weights solves the contradictory problem
between high image resolution required for fine-granularity thus
larger model size, and the shrinking resolution as the number of
RoIs increase. The LSTM layers aggregate the visual information
in the temporal domain to further enhance the prediction stability.

• We build an iOS application using ARKit and Tensorflow [1] to
demonstrate the effectiveness of our solution, and provide com-
prehensive evaluations using a hardware maintenance application
scenario.

2 RELATED WORK

AR for Training and Technical Support. AR is increasingly becoming
a popular medium for technical support and training as it provides an
intuitive way to communicate otherwise complex information. The aim
is to eliminate or reduce training and ease the maintenance operation for
users [23, 24, 33]. Self-Assist AR applications are of particular interest
as they do not require an additional person to guide the support process.
Goto et al. [10] proposed a task support system by displaying instruc-
tional videos on the AR workspace. Petersen et al. [25] developed a
system for automatic creation of a step-by-step task documentation
from a video demonstration for AR and leverage image distance to
follow the workflow. Su et al. [32] presented a CNN to detect the state
and pose of an object in multiple states. Although this work also detects
object states, it lacks the fine-granularity required to detect very minor
changes such as removed screws or connectors, which are critical in
technical support scenarios. YouMove [4] leverages AR to enhance
the movement training by using a large-scale augmented reality mir-
ror. Zhu et al. [40] proposed a context-aware AR system to assist
the operators in maintenance tasks by providing them context relevant
information. Although such existing AR based solutions exhibit ad-
vantages to traditional approaches, they still lack of fine-grained visual
recognition capabilities to enable fully interactive user experiences.

Fine-Grained Visual Recognition. Recognizing fine-grained cate-
gories (e.g., car models [17, 20], bird species [6, 38]) is a very challeng-
ing problem as it requires the capability of localizing and identifying
marginal visual differences. Most existing work [13,36] rely on human-
annotated data sets leveraging bounding boxes to represent relevant
features, but this is very difficult to scale. Weakly-supervised part
models using CNNs with category labels [18] have no dependencies
on bounding boxes for data labeling, hence greatly increase their ap-
plicability. Such approaches consist of two steps: part localization by
training from positive/negative image patches [37] and then extraction
of fine-grained features for recognition. However, these approaches are
not directly applicable for our problem set because of the dynamic cam-
era movements, which bring noise to the captured images. Similarly,
Region Proposal Network (RPN) [26] does not work well in complex
scenarios, such as state recognition for hardware repair, since many
parts (e.g., RAM sticks, screws) may look identical, yet a combination
of those can represent different state of the hardware. Such RPN-based
models lack the ability to focus on specific parts of interest. All existing
approaches share the same assumption that the distinguishable parts
are adequately captured in input images, which may not always be the
case in practice.

3D Object Recognition. Several researchers [15, 16, 31] addressed
3D object recognition by using multiple images for classification based
on the 3D ShapeNets [34] dataset. RotationNet [16] estimates the
object category and pose jointly using multi-views from unsupervised
viewpoints. Edward et al. [15] proposed pairwise decomposition of
image sequences for active multi-view recognition, which takes an
image pair and the relative pose between them as input. MVCNN [31]
takes a fixed number of 2D images taken from different angles as
input to CNN, and fuses the embedding using a secondary CNN for
classification. Similarly, Zhou et al. [39] proposed a method that
requires the user to scan region of interests one by one, and recognizes
the object using a similar neural network design as MVCNN. All these
prior work either assume input images taken from fixed viewing angles
around the object (e.g., azimuth angles with a step of 30◦), or use

1077-2626 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on April 29,2022 at 14:21:05 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU AND GÜVEN: FINE-GRAINED VISUAL RECOGNITION IN MOBILE AUGMENTED REALITY FOR TECHNICAL SUPPORT 3515

Fine-Grained Visual Recognition in Mobile Augmented Reality for
Technical Support
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1 INTRODUCTION

Augmented Reality (AR) enhances the perception of our surroundings
by overlaying media and graphics on top of what we see in the real
world. Over the last decade, we have seen major progress and increased
interest in AR thanks to AR SDKs, such as ARKit [5] and ARCore [9],
which helped lower the barrier for entry for AR development. Recently,
intelligent AR systems driven by Artificial Intelligence (AI) are be-
ginning to emerge to enhance the AR experiences [3, 32]. Despite
this progress, most AR user experiences remain primitive, and lack
intelligence and automation, thereby rendering the user interaction
rather unintuitive. Although AR enables tracking of virtual objects and
annotations in physical spaces through computer vision techniques, it
is not inherently intelligent to actually recognize semantics of what
it sees. For example, in the technical support domain, traditional AR
solutions can recognize a desktop motherboard in the form of a point
cloud to enable tracked annotations on top of the hardware, but it does
not necessarily know that it is looking at a motherboard. Nor would
such system be able to understand if a desktop computer’s cover was
open or closed, or that the motherboard has its fan removed, or a spe-
cific connector unplugged and so on (Figure 1). The lack of semantic,
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fine-grained recognition requires all interaction to be driven by the
user by identifying what they are looking at (e.g., through pre-labelling
objects, specifying the state of an object, etc.) before they can have the
relevant AR content projected to their view, and thereby significantly
limits the interaction.

To address this gap and provide enriched AR user experiences, more
fine-grained visual recognition, i.e., recognizing not only objects but
also the visual state change of an object (or its parts), is desirable
in a wide range of application scenarios, including technical support.
However, there are various challenges associated with providing such
fine-grained visual recognition capabilities. For example, Figure 2
shows images of a computer under repair. In this example, the tech-
nician is replacing the CPU of this computer. To render the relevant
AR instructions in the right context, the visual recognition mechanism
should be able to detect the state change of a part of this computer -
the motherboard. Only when both the battery and the fan are removed
from the motherboard, should the AR instructions for CPU removal
be rendered. Compared to traditional visual recognition methods [11],
implementing such state recognition requires addressing the following
challenges in an AR application: i) Camera Distance: Depending on
the target object or object parts that need to be recognized, the machine
learning model requires the camera to be at varying distance to the
object. For example, in Figure 2(a), in order to recognize the whole
machine in the camera field of view (FoV), the camera needs to be
far away from the machine, while to recognize the battery, the camera
needs to be closer to the machine. This requires our solution to adjust
camera distance dynamically to achieve fine-grained visual recognition.
ii) Viewing Angle: The relevant target object parts need to be visible
to be recognized. This means that the camera must capture the object
at a certain angle. Figure 2(b) shows the machine being viewed from
a particular angle where the battery is occluded by wires, whereas in

Fig. 2. Example images of a computer from different viewing angles
during a repair session.

Figure 2(c), the battery is clearly visible. Unless we maintain a proper
viewing angle, visual recognition naturally results in poor accuracy. iii)
Noisy Input: As shown in Figure 2(d), a common challenge in AR-
driven hardware support is that the object may be temporally occluded
by the user’s hand or tools. It is also common that the input images
are captured by a moving camera, hence can be blurry at times. All
these factors make input images noisy for the visual recognition model.
So our solution needs to be robust in dealing with such noisy input,
while providing reliable and stable recognition results. In addition to
the challenges above, our solution must be designed to work within the
resource and power constraints of mobile devices.

The ideal solution mimics the process of human perception and
reasoning: to detect state changes, it enables the camera to focus on
discrete local areas that change appearance in different states; prompts
the user to adjust to proper viewing angles to collect images from these
local areas, and makes prediction on state change only when sufficient
visual data is collected. Unfortunately, most existing visual recognition
solutions [11, 30] are trained and evaluated using static image data
sets [8], and do not explicitly account for varying camera distance,
viewing angle and specific local areas.

We propose a solution that takes advantage of AR specific data,
such as real-time generated 3D feature points and camera pose, to
complement the images captured by the camera for fine-grained visual
recognition. We first use a set of training videos and learn Regions
of Interest (RoIs), which have appearance changes that distinguish
different states. We actively track the 6-DOF camera pose to ensure
that the camera is kept at the right distance and viewing angle to the
RoIs, minimize occlusions or other noise to the input images of the
visual recognition model. To improve the robustness of recognition,
we develop a discrete multi-stream Convolutional Neural Network
(CNN) [19], in conjunction with bi-directional Long Short Term Mem-
ory (LSTM) [12], namely a Discrete-CNN-LSTM (DCL) model, to
extract not only spatial, but also temporal data to predict state changes.
In summary, our paper makes the following novel contributions:

• We study the unique problem of fine-grained visual recognition
in a mobile AR setting, and propose to combine image, 3D fea-
ture point and camera pose data to actively predict object state
changes.

• We generate RoI candidates from merged 3D feature points col-
lected from AR sessions, and extract distinguishable RoIs au-
tomatically using deep CNN feature representations, which are
tracked and cropped for fine-grained recognition.

• We propose Discrete-CNN-LSTM (DCL) model, which dis-
tributes RoI images on discrete multi-stream CNN branches and

aggregates information with bi-directional LSTM layers. Multi-
stream CNN with shared weights solves the contradictory problem
between high image resolution required for fine-granularity thus
larger model size, and the shrinking resolution as the number of
RoIs increase. The LSTM layers aggregate the visual information
in the temporal domain to further enhance the prediction stability.

• We build an iOS application using ARKit and Tensorflow [1] to
demonstrate the effectiveness of our solution, and provide com-
prehensive evaluations using a hardware maintenance application
scenario.

2 RELATED WORK

AR for Training and Technical Support. AR is increasingly becoming
a popular medium for technical support and training as it provides an
intuitive way to communicate otherwise complex information. The aim
is to eliminate or reduce training and ease the maintenance operation for
users [23, 24, 33]. Self-Assist AR applications are of particular interest
as they do not require an additional person to guide the support process.
Goto et al. [10] proposed a task support system by displaying instruc-
tional videos on the AR workspace. Petersen et al. [25] developed a
system for automatic creation of a step-by-step task documentation
from a video demonstration for AR and leverage image distance to
follow the workflow. Su et al. [32] presented a CNN to detect the state
and pose of an object in multiple states. Although this work also detects
object states, it lacks the fine-granularity required to detect very minor
changes such as removed screws or connectors, which are critical in
technical support scenarios. YouMove [4] leverages AR to enhance
the movement training by using a large-scale augmented reality mir-
ror. Zhu et al. [40] proposed a context-aware AR system to assist
the operators in maintenance tasks by providing them context relevant
information. Although such existing AR based solutions exhibit ad-
vantages to traditional approaches, they still lack of fine-grained visual
recognition capabilities to enable fully interactive user experiences.

Fine-Grained Visual Recognition. Recognizing fine-grained cate-
gories (e.g., car models [17, 20], bird species [6, 38]) is a very challeng-
ing problem as it requires the capability of localizing and identifying
marginal visual differences. Most existing work [13,36] rely on human-
annotated data sets leveraging bounding boxes to represent relevant
features, but this is very difficult to scale. Weakly-supervised part
models using CNNs with category labels [18] have no dependencies
on bounding boxes for data labeling, hence greatly increase their ap-
plicability. Such approaches consist of two steps: part localization by
training from positive/negative image patches [37] and then extraction
of fine-grained features for recognition. However, these approaches are
not directly applicable for our problem set because of the dynamic cam-
era movements, which bring noise to the captured images. Similarly,
Region Proposal Network (RPN) [26] does not work well in complex
scenarios, such as state recognition for hardware repair, since many
parts (e.g., RAM sticks, screws) may look identical, yet a combination
of those can represent different state of the hardware. Such RPN-based
models lack the ability to focus on specific parts of interest. All existing
approaches share the same assumption that the distinguishable parts
are adequately captured in input images, which may not always be the
case in practice.

3D Object Recognition. Several researchers [15, 16, 31] addressed
3D object recognition by using multiple images for classification based
on the 3D ShapeNets [34] dataset. RotationNet [16] estimates the
object category and pose jointly using multi-views from unsupervised
viewpoints. Edward et al. [15] proposed pairwise decomposition of
image sequences for active multi-view recognition, which takes an
image pair and the relative pose between them as input. MVCNN [31]
takes a fixed number of 2D images taken from different angles as
input to CNN, and fuses the embedding using a secondary CNN for
classification. Similarly, Zhou et al. [39] proposed a method that
requires the user to scan region of interests one by one, and recognizes
the object using a similar neural network design as MVCNN. All these
prior work either assume input images taken from fixed viewing angles
around the object (e.g., azimuth angles with a step of 30◦), or use
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Fig. 3. The system consists of two phases: i) off-line object model con-
struction, RoI identification and model training; ii) on-line re-localization,
RoI capturing, visual recognition and device movement feedback.

random images in a group or pairwise form. Unlike the prior work on
common 3D object recognition, which assumes the user knows how and
where to take the input images, our system guides the user to capture
images from the most informative RoIs, based on the camera pose and
the 3D point cloud representing the target object.

3 OVERVIEW

We use the acronym FGVR to refer to Fine-Grained Visual Recognition.
The initial step of FGVR is to identify Regions of Interest (RoIs) that
represent the object state change. We then leverage camera pose tracked
in AR to keep the camera focused on RoIs so that adequate video frames
are captured for state recognition. Finally, we filter out noise in the
frames to improve robustness of the recognition. Figure 3 illustrates
the design of the proposed system, which consists of both off-line and
on-line components.

In the off-line phase, we first harvest data from our AR remote
collaboration sessions [14], or have a dedicated user to scan the object
with a mobile device to construct the relevant object models – 3D point
cloud representations of the object in different states. We also collect
the camera poses, the corresponding feature points and video frames.
Next, the RoI extraction module generates a set of RoIs, based on video
frames collected in different states. These RoIs will determine what
images should be generated from video frames to recognize object
states.

In the on-line phase, FGVR first detects the object and re-localizes
the mobile device with respect to the object, using the object model.
The RoIs identified in the off-line phase are also mapped to the object,
as described later in RoI Identification section. Next, we crop the
images of these RoIs to keep only the relevant areas of the RoIs, and
further process them to train the model for state recognition. During
real-time recognition, the mobile app instructs the user to position the
camera at the right distance and viewing angle to the object, and applies
the trained visual recognition model to predict the current state. Based
on the predicted state, the applicable object model is automatically
selected for AR tracking, and the corresponding AR instructions are
rendered accordingly.

4 FINE-GRAINED ACTIVE VISUAL RECOGNITION

4.1 Object Model Construction
To construct an object model, we scan the physical object using ARKit’s
scanner functionality and extract feature points to create the 3D point
cloud. The feature points extracted from video frames are accumulated
during the course of scanning from different viewing angles. Note that
there is a trade-off between the accuracy and computational overhead
of AR tracking, determined by the density of feature points in the point

Fig. 4. Steps for object model construction and RoI identification.

cloud. In our solution, we leverage relatively sparse point clouds for AR
tracking, and denser point clouds for RoI identification, as described in
the next step.

We construct separate sparse and dense point clouds for physical
objects in different states. This can be accomplished if the user knows
a priori the different states of an object, and performs a separate scan
in each state. Point clouds representing different states can also be
obtained implicitly from our AR-driven remote collaboration sessions
if the users explicitly mark the state change verbally or manually dur-
ing the session. Our point cloud generation algorithms take images
corresponding to each implicit state as input, and generate the relevant
point clouds.

In practice, the point clouds generated may have a lot of noisy fea-
ture points due to, for example, depth estimation inaccuracy. We further
filter the feature points by removing the “non-smooth” outliers from the
neighborhood of each feature point. Feature points at each frame are
represented as P = {p0, p1, . . . , pN}, where pi = {xi,yi,zi} is the loca-
tion of a point i in 3D space, and N is the total number of points. Specif-
ically, for each point pi, we compute its mean distance to all its k near-
est neighbor points q j( j = 1,2, . . . ,k) as d̄i = 1/k ·∑k

j=1 dist(pi,q j),

and the standard deviation as σ =
√

1
k−1 ∑k

j=1
(
d j − d̄i

)2, where
dist(pi,q j) is the euclidean distance between point pi and q j. Assum-
ing the distribution of distance to neighbors is Gaussian: N

(
d̄i,σ2),

all the points with distances d > µ +α ·σ are considered outliers, thus
removed. Here α is a parameter that controls the ”smoothness” of the
point cloud surface. In our implementation, we set k = 50 and α = 1.0.
As shown in Figure 4, we first detect outliers, marked in red in (b), then
derive the clean point cloud in Figure 4(c).

After this step, we obtain the point clouds that robustly represent
the object in different states. For each state, a dense point cloud with
more feature points is generated for RoI identification, while a down-
sampled, sparse point cloud is created for efficient tracking. The point
clouds generated in different states can be easily aligned in the same
3D coordinate system since they use the same sparse point cloud for re-
localization. ARKit re-localization has a certain tolerance to appearance
or shape changes, thus re-localization works well as long as object
changes are partial or minor.

4.2 RoI Identification

RoI is a segment in the 3D space where an object’s physical appearance
changes due to the state change. To visually recognize the changes in
an RoI, we project the RoI to a region in the 2D image taken from a
certain viewing angle of the object. The simplest way to identify an RoI
is to rely on human knowledge: an expert user can draw the boundaries
of RoIs on given images. This is tedious in practice, and can easily
lead to inconsistency in RoI or state definitions due to different human
interpretations. Hence, we developed an approach to automatically
identify the RoIs, given a set of images and point clouds labeled with
different states, as discussed above.

4.2.1 Voxelization
We segment the 3D space into voxels of a fixed size. An RoI consists
of one or multiple voxels, which may contain some (or none) feature
points. To identify the RoIs, we need a consistent way to project voxels
onto 2D images. For that, we define the anchor point for a voxel to
be the centroid of all features points contained in this voxel. When
projecting the voxel, this anchor point is first projected to the 2D image.
Centered around this anchor, a square area with width w is cropped out
of the image to represent the corresponding voxel. This ensures that the
projected image contains sufficient visual details of the object surface.
Figure 4(d) shows the anchor points for all voxels of a sample object.

To guarantee that sufficient visual details are collected for a voxel, we
need to ensure that the object appears in the camera’s field of view. This
is enabled by estimating the normal of the anchor point, with respect to
the object surface. We estimate the normal vector at the anchor point
by calculating the normal of the plane tangent to the object surface at
the anchor point. This can be achieved by least-square plane fitting,
using libraries such as PCL [28]. Examples of the estimated normal
vectors are shown in Figure 4(e).

4.2.2 RoI Image Selection
Given camera-captured images of an object, we crop out the RoI can-
didate images that can serve as input for object state recognition. An
RoI candidate image is a square segment cropped around the voxel
anchor at {x,y,z} with width w. We project the voxel anchor and all
vertices of an RoI candidate to the camera-captured image, and choose
the minimum-bounding rectangle that covers the projected RoI as the
cropping area. Given the camera pose (represented as a transformation
matrix Mcamera) and the coordinates of a point in 3D space Pworld , we
can project this point to be in camera coordinates with:

Pcamera = Pworld ·Mcamera (1)

where Pcamera is the projected point in camera coordinates. We use
perspective projection to project the point in camera coordinates to the
image plane by a simple division of the point’s x and y coordinate by
the z coordinate:

P′ · x = Pcamera · x
−Pcamera · z

P′ · y = Pcamera · y
−Pcamera · z

(2)

Then, we convert the 2D point in image space to raster space, which is
represented as pixel coordinates:

visible =

{
yes |P′ · x| ≤ W

2 or |P′ · y| ≤ H
2

no otherwise (3)

P′
norm · x = P′.x+width/2

width
P′

norm.y =
P′.y+height/2

height
(4)

where W,H are the width and height of the canvas in raster space, and
P′

norm · x, P′
norm · y are normalized coordinates in raster space, which

are further multiplied by the resolution of the image frame so that we
can get the pixel coordinates. An RoI is within the FoV only when the
four projected vertices are visible. The images for each visible RoI are
cropped from the raw full resolution image frame and resized to a fixed
resolution. Multiple RoIs can be cropped simultaneously, as long as
they are within the FoV and visible to the camera in one single frame.
In Figure 4(f), we show a few samples of the RoI candidate images
after the cropping steps described above have been applied.

Next, we select from these RoI candidates the ones that can most
differentiate the object states. We use Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) [29] to perform RoI image selection.
For each state of the object, we have collected images from different
viewing angles. We crop each image to obtain the RoI candidate im-
ages. According to location of the corresponding voxels, we sort and
concatenate the cropped images into single images and resize them to a
fixed resolution (e.g., 224×224) as input data to Grad-CAM, as shown

Fig. 5. Visualization of Grad-CAM map overlaid on the RoI image.

in Figure 5(a). For each state, a subset of these candidate images reflect
the appearance change of the object.

Deeper representations in a Convolutional Neural Network (CNN)
capture higher-lever visual features [22]. State-specific information
in the input image (i.e., from voxels with appearance change) are
usually captured in the last few convolutional layers that have high-
level semantic and spatial information. Grad-CAM uses the gradient
information flowing into the last convolutional layer of the CNN to
understand the importance of each candidate image 1. Our goal of RoI
selection is to class-discriminate localization map Gc ∈ Ru×v of width
u and height v for any class c. For this, we compute the gradient of a
class probability yc with respect to feature maps Ak of a convolutional
layer, i.e., ∂yc

∂Ak . So the weights αc
k can be global-average-pooled as:

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
i j

(5)

where Z is the normalization factor and weight αc
k captures the impor-

tance of the feature map A for a target class c. Following the same
method in [29], the Grad-CAM heat-map is a weighted combination of
feature maps, which is followed by a ReLU [2]:

Gc = ReLU

(
∑
k

αc
k Ak

)
(6)

This results in a coarse heat-map of the same size as the convolu-
tional feature maps (7× 7 in the case of last convolutional layers of
ResNet50 [11]). Then, the heat-map is normalized to 0-1 and resized
to the size of input image, which is visualized by overlaying it on the
input image, as shown in Figure 5.

We adopt a pre-trained ResNet50 on ImageNet [8] as the backbone
model and fine-tune it to classify the concatenated images from all the
states, and then generate the Grad-CAM maps. The Grad-CAM maps
directly indicate the importance of each candidate image for distin-
guishing a specific state. As Grad-CAM is a relatively well-established
algorithm, we did not directly evaluate it in terms of its heat map gen-
eration accuracy. However, its high performance is evident from the
resulting state detection accuracy, as discussed later in Section 6.1.
Figure 5(a) shows the concatenated image of a subset of RoI candidate
images, collected for a computer motherboard. In this example, the
object has three states: default, battery removed, CPU removed. The
cropped image indicating battery removed is in the up right corner of
the image concatenation, while that for CPU removed is at the center
of the concatenation. Figure 5(b) shows the Grad-CAM heatmap over-
laid on the image, which correctly indicates the two cropped images
mentioned above are the best RoI images for differentiating these three
states.

We build a super set of all the top 3 RoI candidates for each state
selected from Grad-CAM and remove the duplicates. This new set of
RoIs are used for final visual recognition model training and inferences
during the on-line phase.

1We also tried other methods such as SIFT [21] and ORB [27], both of which
yield significantly worse performance in identifying RoIs as such methods are
searching for similarities, instead of identifying minor visual differences.
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Fig. 3. The system consists of two phases: i) off-line object model con-
struction, RoI identification and model training; ii) on-line re-localization,
RoI capturing, visual recognition and device movement feedback.

random images in a group or pairwise form. Unlike the prior work on
common 3D object recognition, which assumes the user knows how and
where to take the input images, our system guides the user to capture
images from the most informative RoIs, based on the camera pose and
the 3D point cloud representing the target object.

3 OVERVIEW

We use the acronym FGVR to refer to Fine-Grained Visual Recognition.
The initial step of FGVR is to identify Regions of Interest (RoIs) that
represent the object state change. We then leverage camera pose tracked
in AR to keep the camera focused on RoIs so that adequate video frames
are captured for state recognition. Finally, we filter out noise in the
frames to improve robustness of the recognition. Figure 3 illustrates
the design of the proposed system, which consists of both off-line and
on-line components.

In the off-line phase, we first harvest data from our AR remote
collaboration sessions [14], or have a dedicated user to scan the object
with a mobile device to construct the relevant object models – 3D point
cloud representations of the object in different states. We also collect
the camera poses, the corresponding feature points and video frames.
Next, the RoI extraction module generates a set of RoIs, based on video
frames collected in different states. These RoIs will determine what
images should be generated from video frames to recognize object
states.

In the on-line phase, FGVR first detects the object and re-localizes
the mobile device with respect to the object, using the object model.
The RoIs identified in the off-line phase are also mapped to the object,
as described later in RoI Identification section. Next, we crop the
images of these RoIs to keep only the relevant areas of the RoIs, and
further process them to train the model for state recognition. During
real-time recognition, the mobile app instructs the user to position the
camera at the right distance and viewing angle to the object, and applies
the trained visual recognition model to predict the current state. Based
on the predicted state, the applicable object model is automatically
selected for AR tracking, and the corresponding AR instructions are
rendered accordingly.

4 FINE-GRAINED ACTIVE VISUAL RECOGNITION

4.1 Object Model Construction
To construct an object model, we scan the physical object using ARKit’s
scanner functionality and extract feature points to create the 3D point
cloud. The feature points extracted from video frames are accumulated
during the course of scanning from different viewing angles. Note that
there is a trade-off between the accuracy and computational overhead
of AR tracking, determined by the density of feature points in the point

Fig. 4. Steps for object model construction and RoI identification.

cloud. In our solution, we leverage relatively sparse point clouds for AR
tracking, and denser point clouds for RoI identification, as described in
the next step.

We construct separate sparse and dense point clouds for physical
objects in different states. This can be accomplished if the user knows
a priori the different states of an object, and performs a separate scan
in each state. Point clouds representing different states can also be
obtained implicitly from our AR-driven remote collaboration sessions
if the users explicitly mark the state change verbally or manually dur-
ing the session. Our point cloud generation algorithms take images
corresponding to each implicit state as input, and generate the relevant
point clouds.

In practice, the point clouds generated may have a lot of noisy fea-
ture points due to, for example, depth estimation inaccuracy. We further
filter the feature points by removing the “non-smooth” outliers from the
neighborhood of each feature point. Feature points at each frame are
represented as P = {p0, p1, . . . , pN}, where pi = {xi,yi,zi} is the loca-
tion of a point i in 3D space, and N is the total number of points. Specif-
ically, for each point pi, we compute its mean distance to all its k near-
est neighbor points q j( j = 1,2, . . . ,k) as d̄i = 1/k ·∑k

j=1 dist(pi,q j),

and the standard deviation as σ =
√

1
k−1 ∑k

j=1
(
d j − d̄i

)2, where
dist(pi,q j) is the euclidean distance between point pi and q j. Assum-
ing the distribution of distance to neighbors is Gaussian: N

(
d̄i,σ2),

all the points with distances d > µ +α ·σ are considered outliers, thus
removed. Here α is a parameter that controls the ”smoothness” of the
point cloud surface. In our implementation, we set k = 50 and α = 1.0.
As shown in Figure 4, we first detect outliers, marked in red in (b), then
derive the clean point cloud in Figure 4(c).

After this step, we obtain the point clouds that robustly represent
the object in different states. For each state, a dense point cloud with
more feature points is generated for RoI identification, while a down-
sampled, sparse point cloud is created for efficient tracking. The point
clouds generated in different states can be easily aligned in the same
3D coordinate system since they use the same sparse point cloud for re-
localization. ARKit re-localization has a certain tolerance to appearance
or shape changes, thus re-localization works well as long as object
changes are partial or minor.

4.2 RoI Identification

RoI is a segment in the 3D space where an object’s physical appearance
changes due to the state change. To visually recognize the changes in
an RoI, we project the RoI to a region in the 2D image taken from a
certain viewing angle of the object. The simplest way to identify an RoI
is to rely on human knowledge: an expert user can draw the boundaries
of RoIs on given images. This is tedious in practice, and can easily
lead to inconsistency in RoI or state definitions due to different human
interpretations. Hence, we developed an approach to automatically
identify the RoIs, given a set of images and point clouds labeled with
different states, as discussed above.

4.2.1 Voxelization
We segment the 3D space into voxels of a fixed size. An RoI consists
of one or multiple voxels, which may contain some (or none) feature
points. To identify the RoIs, we need a consistent way to project voxels
onto 2D images. For that, we define the anchor point for a voxel to
be the centroid of all features points contained in this voxel. When
projecting the voxel, this anchor point is first projected to the 2D image.
Centered around this anchor, a square area with width w is cropped out
of the image to represent the corresponding voxel. This ensures that the
projected image contains sufficient visual details of the object surface.
Figure 4(d) shows the anchor points for all voxels of a sample object.

To guarantee that sufficient visual details are collected for a voxel, we
need to ensure that the object appears in the camera’s field of view. This
is enabled by estimating the normal of the anchor point, with respect to
the object surface. We estimate the normal vector at the anchor point
by calculating the normal of the plane tangent to the object surface at
the anchor point. This can be achieved by least-square plane fitting,
using libraries such as PCL [28]. Examples of the estimated normal
vectors are shown in Figure 4(e).

4.2.2 RoI Image Selection
Given camera-captured images of an object, we crop out the RoI can-
didate images that can serve as input for object state recognition. An
RoI candidate image is a square segment cropped around the voxel
anchor at {x,y,z} with width w. We project the voxel anchor and all
vertices of an RoI candidate to the camera-captured image, and choose
the minimum-bounding rectangle that covers the projected RoI as the
cropping area. Given the camera pose (represented as a transformation
matrix Mcamera) and the coordinates of a point in 3D space Pworld , we
can project this point to be in camera coordinates with:

Pcamera = Pworld ·Mcamera (1)

where Pcamera is the projected point in camera coordinates. We use
perspective projection to project the point in camera coordinates to the
image plane by a simple division of the point’s x and y coordinate by
the z coordinate:

P′ · x = Pcamera · x
−Pcamera · z

P′ · y = Pcamera · y
−Pcamera · z

(2)

Then, we convert the 2D point in image space to raster space, which is
represented as pixel coordinates:

visible =

{
yes |P′ · x| ≤ W

2 or |P′ · y| ≤ H
2

no otherwise (3)

P′
norm · x = P′.x+width/2

width
P′

norm.y =
P′.y+height/2

height
(4)

where W,H are the width and height of the canvas in raster space, and
P′

norm · x, P′
norm · y are normalized coordinates in raster space, which

are further multiplied by the resolution of the image frame so that we
can get the pixel coordinates. An RoI is within the FoV only when the
four projected vertices are visible. The images for each visible RoI are
cropped from the raw full resolution image frame and resized to a fixed
resolution. Multiple RoIs can be cropped simultaneously, as long as
they are within the FoV and visible to the camera in one single frame.
In Figure 4(f), we show a few samples of the RoI candidate images
after the cropping steps described above have been applied.

Next, we select from these RoI candidates the ones that can most
differentiate the object states. We use Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) [29] to perform RoI image selection.
For each state of the object, we have collected images from different
viewing angles. We crop each image to obtain the RoI candidate im-
ages. According to location of the corresponding voxels, we sort and
concatenate the cropped images into single images and resize them to a
fixed resolution (e.g., 224×224) as input data to Grad-CAM, as shown

Fig. 5. Visualization of Grad-CAM map overlaid on the RoI image.

in Figure 5(a). For each state, a subset of these candidate images reflect
the appearance change of the object.

Deeper representations in a Convolutional Neural Network (CNN)
capture higher-lever visual features [22]. State-specific information
in the input image (i.e., from voxels with appearance change) are
usually captured in the last few convolutional layers that have high-
level semantic and spatial information. Grad-CAM uses the gradient
information flowing into the last convolutional layer of the CNN to
understand the importance of each candidate image 1. Our goal of RoI
selection is to class-discriminate localization map Gc ∈ Ru×v of width
u and height v for any class c. For this, we compute the gradient of a
class probability yc with respect to feature maps Ak of a convolutional
layer, i.e., ∂yc

∂Ak . So the weights αc
k can be global-average-pooled as:

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
i j

(5)

where Z is the normalization factor and weight αc
k captures the impor-

tance of the feature map A for a target class c. Following the same
method in [29], the Grad-CAM heat-map is a weighted combination of
feature maps, which is followed by a ReLU [2]:

Gc = ReLU

(
∑
k

αc
k Ak

)
(6)

This results in a coarse heat-map of the same size as the convolu-
tional feature maps (7× 7 in the case of last convolutional layers of
ResNet50 [11]). Then, the heat-map is normalized to 0-1 and resized
to the size of input image, which is visualized by overlaying it on the
input image, as shown in Figure 5.

We adopt a pre-trained ResNet50 on ImageNet [8] as the backbone
model and fine-tune it to classify the concatenated images from all the
states, and then generate the Grad-CAM maps. The Grad-CAM maps
directly indicate the importance of each candidate image for distin-
guishing a specific state. As Grad-CAM is a relatively well-established
algorithm, we did not directly evaluate it in terms of its heat map gen-
eration accuracy. However, its high performance is evident from the
resulting state detection accuracy, as discussed later in Section 6.1.
Figure 5(a) shows the concatenated image of a subset of RoI candidate
images, collected for a computer motherboard. In this example, the
object has three states: default, battery removed, CPU removed. The
cropped image indicating battery removed is in the up right corner of
the image concatenation, while that for CPU removed is at the center
of the concatenation. Figure 5(b) shows the Grad-CAM heatmap over-
laid on the image, which correctly indicates the two cropped images
mentioned above are the best RoI images for differentiating these three
states.

We build a super set of all the top 3 RoI candidates for each state
selected from Grad-CAM and remove the duplicates. This new set of
RoIs are used for final visual recognition model training and inferences
during the on-line phase.

1We also tried other methods such as SIFT [21] and ORB [27], both of which
yield significantly worse performance in identifying RoIs as such methods are
searching for similarities, instead of identifying minor visual differences.
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4.3 Visual Recognition Model

With the concatenated RoI images as input, we can now develop CNN
models to predict the class or state of an object. For simple scenarios,
where an object only has a small number of RoIs (e.g., less than 6x6
concatenated RoI images), a light-weight, shallow CNN with max pool-
ing and batch normalization is sufficient. As the application scenario
becomes more complex, more RoIs are needed to cover all states. In
such cases, naively concatenating all RoI images into a single input
causes problems: the resolution for each RoI reduces as the number
of RoI increases as the concatenated image resolution is fixed, which
leads to loss of visual details. If we retain the resolution of each RoI,
the concatenated image resolution will quickly grow to be not suitable
as input to the simple CNN model.

To deal with this challenge, we propose a discrete-CNN-LSTM
model, which contains layers of discrete multi-branch visual feature
extraction, followed by layers of spatial and temporal information ag-
gregation for the final classification. Figure 6 shows the architecture
of the DCL model. The feature extraction module consists of multiple
feature extraction branches, each of which take concatenated RoI im-
ages (containing a maximum of 9 RoIs) as input. We use a pre-trained
ResNet50 on ImageNet as the base model for feature extraction, but
we remove the last fully connected layer of the model, thus getting a
2048-dimensional feature vector for each input image, which is then
fed to a pooling layer. The ResNet50 inference only runs whenever
there is an RoI image update for the concatenated input image. The
image features extracted for other unchanged branches are reused. In
this way, we minimize the computation overhead on feature extraction,
thereby significantly reducing the computation overhead and power
consumption when the model is implemented on mobile devices.

We concatenate all extracted image features after the pooling layer
into a single feature vector, which presents all critical visual information
for state recognition. Instead of feeding this feature vector into a fully-
connected deep neural network like MVCNN [31], we use LSTM to
model the temporal relationship between states: the temporal sequence
of the feature vectors is fed to the LSTM layer, which predicts the
object state distribution. As we shall see in later sections, leveraging
the temporal relationship between states significantly improves the
prediction accuracy of our model.

4.4 Active Visual Recognition

The visual recognition model described above is trained offline, using
the labeled data collected a priori. When building the mobile application
to detect an object’s state, we not only need to implement the trained
visual recognition model, but need to consider two more design aspects:
re-localization and RoI capturing.

4.4.1 Re-localization

Re-localization ensures the camera pose is tracked consistently across
AR sessions, with respect to fixed object coordinates. This is critical
for both capturing the correct RoIs and presenting AR annotations in
the right positions relative to the object. We use the sparse point cloud
obtained during reference object model creation for re-localization,
leveraging the object tracking capability of ARKit. In a given AR
application, there are two potential state change scenarios: 1) the state
change involves minor appearance change, hence the same sparse point
cloud can be used for tracking; 2) the state change involves major
appearance change, so that a new point cloud needs to be loaded and
AR session re-localizes.

In our design, we first use a coarse-grained recognition module to
detect if there is a major appearance change (e.g., cover open vs. closed)
as shown in Figure 7. For this, we adapt a ResNet50 model trained
on the images from data collection, which uses real time images taken
from the object to detect major changes, and triggers re-localization
only when it is necessary. If the appearance change is minor, neither
ARKit nor the ResNet50 classifier is sufficient to detect the state of the
object, hence the need for the fine-grained recognition step shown in
Figure 7.

4.4.2 RoI Capturing
Previously, we described the basic idea of capturing RoIs as image
segments cropped from camera view. To capture the RoI images in
a robust, online manner, we need to further address the following
problems: occlusion detection, RoI image update, and device movement
feedback.

Occlusion Detection. A RoI can be only visible to the camera from
certain viewing angles, or it can be occluded by other objects in the
scene. Figure 8 shows such an example. The camera pose in Figure 8(a)
yields valid capturing of the RoI, as indicated by the red circle, while
for the camera in Figure 8(b), the RoI is occluded from the camera’s
view point.

A naive approach is to check if sufficient 3D feature points for a RoI
are detected on each frame, so as to determine if the RoI is occluded.
However, due to computation overhead, feature points are typically
not updated in real time for every frame. As the mobile device moves
around, the device motion is updated at a high frequency to capture
the minor displacement. The feature points are then triangulated to
infer their 3D positions, which are also used for calibrating the camera
pose error by ARKit. So there exists a delay between the feature points
detected and the current frame. As the device is moving from “visible
pose” to “invisible pose” (e.g., from the pose in Figure 8(a) to (b)), the
features detected in (a) also exist in (b) for a short time. To account for
this latency, we examine the past consecutive 5 frames as well as the
feature points detected in the corresponding time period, to determine
whether the RoI is occluded.

To determine occlusion for a certain RoI, the following three condi-
tions must be satisfied: i) Within the camera FoV: The projected RoI
must be within the current video frame, so that it is ready to be updated.
ii) No sufficient feature points detected: Sufficient feature points must
be detected for RoI capturing. If no sufficient feature points (e.g., <
10) are detected for a short period of 3 seconds, it indicates occlusion
happens. We use the accumulated feature points for a short period
to avoid false positives, because the feature points may be too sparse
even when the RoI is not occluded. iii) Sufficient device movement:
Because feature points rely on triangulation, which requires device
movement, the feature points of a frame will remain unchanged or no
feature points are generated if the mobile device remains stationary.
Without sufficient feature points, it is not possible to tell whether the
RoI is occluded.

RoI Image Update. When predicting object state online (i.e., while
using the AR application), the visual recognition needs input images
from all RoIs, except for those that have not changed visually. Mean-
while, as the camera moves around an object, not all RoIs are visible to
the camera, either because some RoIs are outside the camera’s FoV or
because they are occluded. The occlusion has two types: permanent
occlusion, which means an RoI is occluded by other object components
permanently in an object state (e.g., a fan covers a CPU); and transient
occlusion, which is caused by inappropriate viewing angle or temporar-
ily occluded by other objects such as user’s hand. For a specific RoI, if
it is continually detected as occluded for a long time (we set an empiri-
cal 5 s in current design) when the device is actively moved by the user
while the RoI is within FOV, we classify the occlusion as permanent.
In such cases, the image for this RoI needs to be reset to zeros for
consistency (the state of “Fan is ON” in Figure 2(a) can either happen
before or after the CPU is captured, depending whether the machine
is being assembled or disassembled). Similarly, when a component is
removed, we also need to reset the associated RoIs. This is detected if
such RoIs are within the FOV, but not detected for a period when they
are not occluded.

If transient occlusion is detected or invisible RoIs are outside the
FoV, we assume there is no change visually. Therefore, during model
prediction, the corresponding feature extraction branches in Figure 6
will not be activated, but will reuse the previously extracted vectors,
minimizing the unnecessary computations on the mobile device to
prevent device heating. Usually it is natural for the user to view the
object changes through camera where AR annotations are displayed,
thus such changes are captured passively. In rare cases, it is possible
that user has disassembled a part of the hardware which altered its

Fig. 6. The multi-branch CNN extracts spatial features from concatenated RoI images, which are aggregated by a pooling layer. An LSTM layer
further aggregates the temporal information for stable predictions.

Fig. 7. The pose independent coarse-grained recognition selects the
correct object model for re-localization, which enables fine-grained recog-
nition.

Fig. 8. RoI occlusion example.

visual state, but if it is occluded or outside of the FoV, this will not be
considered a state change, and therefore the next set of instructions,
will not be provided to the user. Thus, our app encourages the users
to move the camera so as to view the altered object parts such that
the RoIs can be efficiently updated, enabling responsive and accurate
recognition results.

When the user holds the camera over an object, the captured video
frames are likely to have varying quality (e.g., blurred images due
to fast motion, unclear images due to the viewing angle, or large
distance between the camera and object). To ensure robust recog-
nition, we need to further filter out the RoI images to extract the
best-quality image set as input for the visual recognition model. As
shown in Figure 9, for each RoI we keep track of device movement
and rotation speed �v, the angle between the camera normal and the
RoI normal a, and the distance from camera to RoI d. Given a
camera pose {xp,yp,zp,nxp,nyp,nzp} where {xp,yp,zp} is the cam-
era position and n̂p = {nxp,nyp,nzp} is the camera normal, and a RoI
{xr,yr,zr,nxr,nyr,nzr,wr}, the distance from the camera to a RoI can be

calculated as d =
√

(xp − xr)2 +(yp − yr)2 +(zp − zr)2 and the angle

between the normals of camera and RoI is α =
n̂p·n̂r

|n̂p|·|n̂r | . The camera’s

Fig. 9. RoI optimization evaluates the device’s moving speed, viewing
angle and distance to select the optimal captured RoI image.

moving/rotation speed is estimated with the camera pose when a frame
is captured pt and the pose at ∆T earlier pt−∆T (∆T is set to 0.1 s in
our design). The absolute combined moving/rotation speed can be
calculated as |�v |=| (pt − pt−∆T ). Note that we normalize the moving
speed and rotation speed to balance their contribution to the combined
speed before the calculation. We maintain a queue of 5 input images for
every RoI, and they are updated every 300 ms if eligible RoI is captured
by popping out the first RoI and pushing the new RoI. We choose 5
images because it only requires a small time window of 1.5 s and it
minimizes the impact of images captured when the RoI is going out
of FOV. We feed an RoI image to the queue only if |�v |< δv, α < 60◦
and d < 1m, where δv is a threshold so that images are not blurred
when device is moving within this threshold 2. To select the optimal
RoI, we choose the one with smallest α as it impacts the performance
most for the eligible RoIs according to our experiments. Without such
queuing and selection, the last update for an RoI usually happens when
it’s about to exit the FoV, which is not optimal.

Device Movement Feedback. To ensure good-quality RoI capture, the
device camera needs to be properly positioned. We provide feedback
through the AR app to guide the user to position the camera such that it
is at the right position and that they are not moving the camera too fast
or too far away from the RoIs. The feedback instructions are shown
only when RoI images are not adequately captured. Specifically, if the
RoIs are not updated for a period of time (e.g., 10s), which means they
are not viewed from appropriate angles or distance, then appropriate
instructions will be displayed to ask the user to move the mobile device.
On the other hand, recognition results are ambiguous, we instruct the

2These are empirical numbers we get from extensive experiments, δv may
be different under different lighting conditions.
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4.3 Visual Recognition Model

With the concatenated RoI images as input, we can now develop CNN
models to predict the class or state of an object. For simple scenarios,
where an object only has a small number of RoIs (e.g., less than 6x6
concatenated RoI images), a light-weight, shallow CNN with max pool-
ing and batch normalization is sufficient. As the application scenario
becomes more complex, more RoIs are needed to cover all states. In
such cases, naively concatenating all RoI images into a single input
causes problems: the resolution for each RoI reduces as the number
of RoI increases as the concatenated image resolution is fixed, which
leads to loss of visual details. If we retain the resolution of each RoI,
the concatenated image resolution will quickly grow to be not suitable
as input to the simple CNN model.

To deal with this challenge, we propose a discrete-CNN-LSTM
model, which contains layers of discrete multi-branch visual feature
extraction, followed by layers of spatial and temporal information ag-
gregation for the final classification. Figure 6 shows the architecture
of the DCL model. The feature extraction module consists of multiple
feature extraction branches, each of which take concatenated RoI im-
ages (containing a maximum of 9 RoIs) as input. We use a pre-trained
ResNet50 on ImageNet as the base model for feature extraction, but
we remove the last fully connected layer of the model, thus getting a
2048-dimensional feature vector for each input image, which is then
fed to a pooling layer. The ResNet50 inference only runs whenever
there is an RoI image update for the concatenated input image. The
image features extracted for other unchanged branches are reused. In
this way, we minimize the computation overhead on feature extraction,
thereby significantly reducing the computation overhead and power
consumption when the model is implemented on mobile devices.

We concatenate all extracted image features after the pooling layer
into a single feature vector, which presents all critical visual information
for state recognition. Instead of feeding this feature vector into a fully-
connected deep neural network like MVCNN [31], we use LSTM to
model the temporal relationship between states: the temporal sequence
of the feature vectors is fed to the LSTM layer, which predicts the
object state distribution. As we shall see in later sections, leveraging
the temporal relationship between states significantly improves the
prediction accuracy of our model.

4.4 Active Visual Recognition

The visual recognition model described above is trained offline, using
the labeled data collected a priori. When building the mobile application
to detect an object’s state, we not only need to implement the trained
visual recognition model, but need to consider two more design aspects:
re-localization and RoI capturing.

4.4.1 Re-localization

Re-localization ensures the camera pose is tracked consistently across
AR sessions, with respect to fixed object coordinates. This is critical
for both capturing the correct RoIs and presenting AR annotations in
the right positions relative to the object. We use the sparse point cloud
obtained during reference object model creation for re-localization,
leveraging the object tracking capability of ARKit. In a given AR
application, there are two potential state change scenarios: 1) the state
change involves minor appearance change, hence the same sparse point
cloud can be used for tracking; 2) the state change involves major
appearance change, so that a new point cloud needs to be loaded and
AR session re-localizes.

In our design, we first use a coarse-grained recognition module to
detect if there is a major appearance change (e.g., cover open vs. closed)
as shown in Figure 7. For this, we adapt a ResNet50 model trained
on the images from data collection, which uses real time images taken
from the object to detect major changes, and triggers re-localization
only when it is necessary. If the appearance change is minor, neither
ARKit nor the ResNet50 classifier is sufficient to detect the state of the
object, hence the need for the fine-grained recognition step shown in
Figure 7.

4.4.2 RoI Capturing
Previously, we described the basic idea of capturing RoIs as image
segments cropped from camera view. To capture the RoI images in
a robust, online manner, we need to further address the following
problems: occlusion detection, RoI image update, and device movement
feedback.

Occlusion Detection. A RoI can be only visible to the camera from
certain viewing angles, or it can be occluded by other objects in the
scene. Figure 8 shows such an example. The camera pose in Figure 8(a)
yields valid capturing of the RoI, as indicated by the red circle, while
for the camera in Figure 8(b), the RoI is occluded from the camera’s
view point.

A naive approach is to check if sufficient 3D feature points for a RoI
are detected on each frame, so as to determine if the RoI is occluded.
However, due to computation overhead, feature points are typically
not updated in real time for every frame. As the mobile device moves
around, the device motion is updated at a high frequency to capture
the minor displacement. The feature points are then triangulated to
infer their 3D positions, which are also used for calibrating the camera
pose error by ARKit. So there exists a delay between the feature points
detected and the current frame. As the device is moving from “visible
pose” to “invisible pose” (e.g., from the pose in Figure 8(a) to (b)), the
features detected in (a) also exist in (b) for a short time. To account for
this latency, we examine the past consecutive 5 frames as well as the
feature points detected in the corresponding time period, to determine
whether the RoI is occluded.

To determine occlusion for a certain RoI, the following three condi-
tions must be satisfied: i) Within the camera FoV: The projected RoI
must be within the current video frame, so that it is ready to be updated.
ii) No sufficient feature points detected: Sufficient feature points must
be detected for RoI capturing. If no sufficient feature points (e.g., <
10) are detected for a short period of 3 seconds, it indicates occlusion
happens. We use the accumulated feature points for a short period
to avoid false positives, because the feature points may be too sparse
even when the RoI is not occluded. iii) Sufficient device movement:
Because feature points rely on triangulation, which requires device
movement, the feature points of a frame will remain unchanged or no
feature points are generated if the mobile device remains stationary.
Without sufficient feature points, it is not possible to tell whether the
RoI is occluded.

RoI Image Update. When predicting object state online (i.e., while
using the AR application), the visual recognition needs input images
from all RoIs, except for those that have not changed visually. Mean-
while, as the camera moves around an object, not all RoIs are visible to
the camera, either because some RoIs are outside the camera’s FoV or
because they are occluded. The occlusion has two types: permanent
occlusion, which means an RoI is occluded by other object components
permanently in an object state (e.g., a fan covers a CPU); and transient
occlusion, which is caused by inappropriate viewing angle or temporar-
ily occluded by other objects such as user’s hand. For a specific RoI, if
it is continually detected as occluded for a long time (we set an empiri-
cal 5 s in current design) when the device is actively moved by the user
while the RoI is within FOV, we classify the occlusion as permanent.
In such cases, the image for this RoI needs to be reset to zeros for
consistency (the state of “Fan is ON” in Figure 2(a) can either happen
before or after the CPU is captured, depending whether the machine
is being assembled or disassembled). Similarly, when a component is
removed, we also need to reset the associated RoIs. This is detected if
such RoIs are within the FOV, but not detected for a period when they
are not occluded.

If transient occlusion is detected or invisible RoIs are outside the
FoV, we assume there is no change visually. Therefore, during model
prediction, the corresponding feature extraction branches in Figure 6
will not be activated, but will reuse the previously extracted vectors,
minimizing the unnecessary computations on the mobile device to
prevent device heating. Usually it is natural for the user to view the
object changes through camera where AR annotations are displayed,
thus such changes are captured passively. In rare cases, it is possible
that user has disassembled a part of the hardware which altered its

Fig. 6. The multi-branch CNN extracts spatial features from concatenated RoI images, which are aggregated by a pooling layer. An LSTM layer
further aggregates the temporal information for stable predictions.

Fig. 7. The pose independent coarse-grained recognition selects the
correct object model for re-localization, which enables fine-grained recog-
nition.

Fig. 8. RoI occlusion example.

visual state, but if it is occluded or outside of the FoV, this will not be
considered a state change, and therefore the next set of instructions,
will not be provided to the user. Thus, our app encourages the users
to move the camera so as to view the altered object parts such that
the RoIs can be efficiently updated, enabling responsive and accurate
recognition results.

When the user holds the camera over an object, the captured video
frames are likely to have varying quality (e.g., blurred images due
to fast motion, unclear images due to the viewing angle, or large
distance between the camera and object). To ensure robust recog-
nition, we need to further filter out the RoI images to extract the
best-quality image set as input for the visual recognition model. As
shown in Figure 9, for each RoI we keep track of device movement
and rotation speed �v, the angle between the camera normal and the
RoI normal a, and the distance from camera to RoI d. Given a
camera pose {xp,yp,zp,nxp,nyp,nzp} where {xp,yp,zp} is the cam-
era position and n̂p = {nxp,nyp,nzp} is the camera normal, and a RoI
{xr,yr,zr,nxr,nyr,nzr,wr}, the distance from the camera to a RoI can be

calculated as d =
√
(xp − xr)2 +(yp − yr)2 +(zp − zr)2 and the angle

between the normals of camera and RoI is α =
n̂p·n̂r

|n̂p|·|n̂r | . The camera’s

Fig. 9. RoI optimization evaluates the device’s moving speed, viewing
angle and distance to select the optimal captured RoI image.

moving/rotation speed is estimated with the camera pose when a frame
is captured pt and the pose at ∆T earlier pt−∆T (∆T is set to 0.1 s in
our design). The absolute combined moving/rotation speed can be
calculated as |�v |=| (pt − pt−∆T ). Note that we normalize the moving
speed and rotation speed to balance their contribution to the combined
speed before the calculation. We maintain a queue of 5 input images for
every RoI, and they are updated every 300 ms if eligible RoI is captured
by popping out the first RoI and pushing the new RoI. We choose 5
images because it only requires a small time window of 1.5 s and it
minimizes the impact of images captured when the RoI is going out
of FOV. We feed an RoI image to the queue only if |�v |< δv, α < 60◦
and d < 1m, where δv is a threshold so that images are not blurred
when device is moving within this threshold 2. To select the optimal
RoI, we choose the one with smallest α as it impacts the performance
most for the eligible RoIs according to our experiments. Without such
queuing and selection, the last update for an RoI usually happens when
it’s about to exit the FoV, which is not optimal.

Device Movement Feedback. To ensure good-quality RoI capture, the
device camera needs to be properly positioned. We provide feedback
through the AR app to guide the user to position the camera such that it
is at the right position and that they are not moving the camera too fast
or too far away from the RoIs. The feedback instructions are shown
only when RoI images are not adequately captured. Specifically, if the
RoIs are not updated for a period of time (e.g., 10s), which means they
are not viewed from appropriate angles or distance, then appropriate
instructions will be displayed to ask the user to move the mobile device.
On the other hand, recognition results are ambiguous, we instruct the

2These are empirical numbers we get from extensive experiments, δv may
be different under different lighting conditions.
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user to move the device toward collecting more RoI images, which are
associated with such ambiguous states from RoI identification, until
the object state is disambiguated.

5 IMPLEMENTATION

We implemented FGVR in two parts: an off-line model training pro-
gram that runs on the server, and an on-line mobile AR app that lever-
ages the extracted RoIs and the trained model to perform fine-grained
visual recognition.

5.1 Off-line Model Training
Training Data Generation. The RoI cropping during the training data
collection produces a bunch of images for each RoI under each object
state, which are concatenated as the training image for model training.
To minimize the training data collection effort, we only require a few
minutes of object scanning. We then further enhance the collected data
in two steps:

• Data Augmentation. We first augment the RoI images leveraging
existing approaches such as random rotation, shifts, and shear.
Random rotation of the RoI images enables much robust recogni-
tion performance when the object is viewed from random angles.
We also shift and shear the RoI images, because the captured RoI
image may not be centered and may be off-center in a variety of
different ways due to the off-set in RoI tracking caused by device
pose estimation error. With such augmentation, we populate the
images for each RoI under each object states.

• Image Concatenation. To generate the images that are consum-
able for model training, the individual images for each RoI need to
be concatenated. Since these RoI images capture the information
of the corresponding RoIs, and they may be captured at differ-
ent times, and thus they are semi-independent of each other. To
augment the concatenated images, we randomly draw the images
from each RoI image set, and concatenate them as a new training
sample. This significantly increases the training data amount, and
also captures the variety of the combinations of RoI images.

We use the same techniques to generate the training data for both RoI
extraction, and the final fine-grained visual recognition model training.

Model Training. To collect training data, we scan the object at each
state for approximately 2 mins. Note that it is a one-time effort to
build the model for a new object. For evaluation purposes, we run this
training program off-line on a PC with GTX 1080 GPU. Keras [7] with
Tensorflow backend is used for CNN construction and training. After
the training, we convert the visual recognition model to CoreML [5]
format to run on iOS platform.

5.2 On-line Mobile App
We developed an iOS-based mobile application for real-time testing
and evaluation. ARKit is used as AR SDK for re-localization, camera
pose tracking and AR experience rendering. CoreML framework is
used for executing on-device machine learning inferences. We schedule
a task for real-time recognition and stabilize the result via multiple
trials:

• Recognition Scheduling. We schedule a timer to check whether
the RoIs are updated every 300 ms, and execute the CNN feature
extraction branches, whose input image is updated. We execute
the spatial and temporal information aggregation and classifica-
tion layers once per second if any CNN feature update is triggered.
By updating each branch only when RoI changes, we reduce un-
necessary computations.

• Prediction Stabilization. To further stabilize the state prediction
result, especially during the transitions from one state to another,
we leverage a rolling average prediction method. We buffer a
queue of latest N prediction results, and only output a final result
if one predicted state appears N-1 times out of N.

Fig. 10. Confusion matrix of state recognition results.

Fig. 11. Recognition accuracy comparison of data augmentation (DA)
with different number of training images.

6 EVALUATION

We evaluate our FGVR algorithm from multiple aspects: recognition
accuracy and impact factors, comparison with existing approaches, and
resource overhead.

6.1 Recognition Accuracy and Impact Factors
To validate the overall system design, we first evaluate the performance
of a naive light-weight CNN model (LW model) with our RoI capturing
mechanism, then followed by a comparison against DCL and VGG-
based models. LW model is a two-layer CNN followed by pooling and
fully connected layers for classification.

6.1.1 State Recognition Accuracy

We take the task of replacing a CPU on a desktop machine, which
involves 6 steps (e.g., removing screws/fan, unplugging wires, releasing
CPU latch, etc.) as our target task in this evaluation. We scan the
machine under each state for ∼ 2 mins as training data and another ∼ 1
min for testing. Video frames are sampled every 300 ms, thus 1 min′s
data collection captures ∼ 200 image frames. We extract the RoIs and
train the LW model for evaluation. Figure 10 shows the confusion
matrix of the results. The recognition accuracy is close to or above 95%
for most states, except state 3, which is mis-recognized as adjacent
states. This state is easier to be confused with adjacent states, because
the visual difference is very small: the fan collector hides deep in the
machine, and it is only visible from a very limited viewing angles. Note
that these results are based on individual recognition results. We found
that error results are usually not adjacent to each other, thus we can
further improve the accuracy and stability with multiple trials, which is
evaluated later. Nevertheless, the overall results clearly demonstrated
that FGVR is robust enough for practical use.

6.1.2 Factors Affecting Model Accuracy

Data Augmentation. We evaluate how effective data augmentation (DA)
can improve the performance by populating the training images, espe-
cially when training data is limited. Figure 11 shows the recognition
accuracy under different amounts of training samples from 300 to 1500.
It is obvious that data augmentation improves the accuracy significantly,
especially when the training samples are very limited (e.g., < 900). As
the size grows, the accuracy performance becomes stable both with and
without DA, although still slightly higher with DA indicating the model
generalization improvement of DA.

Fig. 12. Recognition accuracy with different RoI sizes.

Fig. 13. False rate and latency with different number of trials.

RoI Size. The RoI size (the length/width of the square) is critical
for achieving the best recognition performance. Smaller RoI size
enables more focused perception of object parts, thus more fine-grained
recognition, but also leads to smaller coverage area, which may miss
the distinguishable parts due to offsets caused by device movements.
In such cases, it produces larger errors. Larger RoI size enables larger
coverage, thus less possible to miss the distinguishable parts, but at the
same time, it also captures more background “noise” and shrinks the
resolution of critical areas for state recognition. We evaluate the impact
of different RoI sizes on the recognition accuracy. Figure 12 shows the
resulting accuracy with RoI size from 1-9 cm. We collect data with RoI
size 1,3,5,7,9 cm. The experiment shows 5 cm to be the optimal size as
it achieves the highest accuracy. Depending on the actual size of the
object, the optimal RoI size may differ. Dynamically choosing RoI size
will be future work.

Recognition Stabilization. It is critical to have stable and accurate
recognition results as any incorrect recognition would trigger irrelevant
animations or instructions in the AR application. This is not only dis-
ruptive but also confuses users, leading to a poor user experience. We
evaluate the false rate (i.e., inaccurate state recognition) and latency
when multiple recognition trials are conducted for each cycle. Recog-
nition trial happens every 300 ms thus one verdict from multiple trials
is fast enough, causing no obvious delay to the user. At least N − 1
trial must indicate the same result out of N trials in a cycle to declare
state result. Figure 13 shows that more trials lowers down the false rate
rapidly at the cost of larger latency. This is because more trials give the
more stable results, thus reducing false results. With 5 trials, the false
rate is less than 0.5%. We choose 5 trials for each recognition circle
to balance the stability and latency. Note that in practical use case, the
object states do not change frequently, 1-2 s latency is negligible.

6.2 Comparison with Existing Approaches
Accuracy Comparison. We compare the performance of LW, DCL
models and a representative object recognition model VGG16 [30]. As
RoI capturing is a key component for FGVR , we also compare the
performance of all models with RoI capturing and raw image frames.
We fine-tune the VGG16 with pre-trained weights from ImageNet [8],
and freeze all the layers except the last two fully connected layers
while training. Figure 14 show the results. With RoI capturing, all
the three models achieved high accuracy (> 97%), and DCL model
has the highest accuracy of 99.87%. The VGG-based model also has
an accuracy of 97.74%, which demonstrates the effectiveness of the

Fig. 14. Accuracy of different models with RoI capturing or using raw
image frames.

Fig. 15. Comparison of accuracy of different models, as the object
becomes more complex, requiring more RoIs.

features extracted by VGG16. The results with RoI capturing are
significantly higher than those using raw image frames as input, which
achieve only ∼ 50% accuracy. This is mainly because of the occlusions
and the lack of fine-granularity. The images may look the same for
some states if the changing parts are occluded, thus causing a lot of
noises in the training and testing data. VGG-based model has the
highest accuracy among the three using raw image frames, even better
than DCL model. This is probably because DCL model takes multiple
“noisy” frames as input, which is more difficult to converge.

Impact of Number of RoIs. As the number of RoI increases, if
the resolution of each RoI does not change, the concatenated image
resolution increases. If the concatenated image resolution is fixed, each
RoI image resolution shrinks. Image with too large resolution may
need to be reshaped to be fit into models such as VGG. We collect
new data on a more complex object, and we manually added more
RoIs. Figure 15 show the results when we have 8, 16, and 32 RoIs.
As the number of RoI grows, VGG model accuracy drops to < 75%
due to the resizing. LW has better performance than VGG at a cost of
increased model size (increasing parameters). The DCL model has the
best performance and only show marginally decrease in accuracy.

Model Size Comparison. The size of a model is critical for it to
be executed efficiently, especially on a resource constrained mobile
device. Figure 16 shows the number of parameters of the three models,
as the number of RoI increases. The VGG-based model has a constant
number of ∼ 14.85 M as the images are resized to a fixed resolution
of 224×224. The DCL model leverages VGG for feature extraction,
thus has more parameters than VGG. The parameter increases by ∼ 1.6
M every additional 9 RoIs (assuming the input image for each branch
consists of 9 RoIs). The LW model has the least parameters when RoI
is fewer than 25, after that it grows significantly faster then DCL model.
Thus, DCL is more suitable for complex objects.

6.3 Generalization of on More Objects
Our visual recognition system is built on top of an in-production AR-
based technical support system with a large volume of users. The
pilot tests consist of experiments on several products, which include
enterprise-level servers, ATM cash dispensers, receipt printers, laptops
and PC motherboards. The tasks cover server CPU replacement, cash
dispenser disassembly, refilling paper of receipt printers, laptop repair
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user to move the device toward collecting more RoI images, which are
associated with such ambiguous states from RoI identification, until
the object state is disambiguated.

5 IMPLEMENTATION

We implemented FGVR in two parts: an off-line model training pro-
gram that runs on the server, and an on-line mobile AR app that lever-
ages the extracted RoIs and the trained model to perform fine-grained
visual recognition.

5.1 Off-line Model Training
Training Data Generation. The RoI cropping during the training data
collection produces a bunch of images for each RoI under each object
state, which are concatenated as the training image for model training.
To minimize the training data collection effort, we only require a few
minutes of object scanning. We then further enhance the collected data
in two steps:

• Data Augmentation. We first augment the RoI images leveraging
existing approaches such as random rotation, shifts, and shear.
Random rotation of the RoI images enables much robust recogni-
tion performance when the object is viewed from random angles.
We also shift and shear the RoI images, because the captured RoI
image may not be centered and may be off-center in a variety of
different ways due to the off-set in RoI tracking caused by device
pose estimation error. With such augmentation, we populate the
images for each RoI under each object states.

• Image Concatenation. To generate the images that are consum-
able for model training, the individual images for each RoI need to
be concatenated. Since these RoI images capture the information
of the corresponding RoIs, and they may be captured at differ-
ent times, and thus they are semi-independent of each other. To
augment the concatenated images, we randomly draw the images
from each RoI image set, and concatenate them as a new training
sample. This significantly increases the training data amount, and
also captures the variety of the combinations of RoI images.

We use the same techniques to generate the training data for both RoI
extraction, and the final fine-grained visual recognition model training.

Model Training. To collect training data, we scan the object at each
state for approximately 2 mins. Note that it is a one-time effort to
build the model for a new object. For evaluation purposes, we run this
training program off-line on a PC with GTX 1080 GPU. Keras [7] with
Tensorflow backend is used for CNN construction and training. After
the training, we convert the visual recognition model to CoreML [5]
format to run on iOS platform.

5.2 On-line Mobile App
We developed an iOS-based mobile application for real-time testing
and evaluation. ARKit is used as AR SDK for re-localization, camera
pose tracking and AR experience rendering. CoreML framework is
used for executing on-device machine learning inferences. We schedule
a task for real-time recognition and stabilize the result via multiple
trials:

• Recognition Scheduling. We schedule a timer to check whether
the RoIs are updated every 300 ms, and execute the CNN feature
extraction branches, whose input image is updated. We execute
the spatial and temporal information aggregation and classifica-
tion layers once per second if any CNN feature update is triggered.
By updating each branch only when RoI changes, we reduce un-
necessary computations.

• Prediction Stabilization. To further stabilize the state prediction
result, especially during the transitions from one state to another,
we leverage a rolling average prediction method. We buffer a
queue of latest N prediction results, and only output a final result
if one predicted state appears N-1 times out of N.

Fig. 10. Confusion matrix of state recognition results.

Fig. 11. Recognition accuracy comparison of data augmentation (DA)
with different number of training images.

6 EVALUATION

We evaluate our FGVR algorithm from multiple aspects: recognition
accuracy and impact factors, comparison with existing approaches, and
resource overhead.

6.1 Recognition Accuracy and Impact Factors
To validate the overall system design, we first evaluate the performance
of a naive light-weight CNN model (LW model) with our RoI capturing
mechanism, then followed by a comparison against DCL and VGG-
based models. LW model is a two-layer CNN followed by pooling and
fully connected layers for classification.

6.1.1 State Recognition Accuracy

We take the task of replacing a CPU on a desktop machine, which
involves 6 steps (e.g., removing screws/fan, unplugging wires, releasing
CPU latch, etc.) as our target task in this evaluation. We scan the
machine under each state for ∼ 2 mins as training data and another ∼ 1
min for testing. Video frames are sampled every 300 ms, thus 1 min′s
data collection captures ∼ 200 image frames. We extract the RoIs and
train the LW model for evaluation. Figure 10 shows the confusion
matrix of the results. The recognition accuracy is close to or above 95%
for most states, except state 3, which is mis-recognized as adjacent
states. This state is easier to be confused with adjacent states, because
the visual difference is very small: the fan collector hides deep in the
machine, and it is only visible from a very limited viewing angles. Note
that these results are based on individual recognition results. We found
that error results are usually not adjacent to each other, thus we can
further improve the accuracy and stability with multiple trials, which is
evaluated later. Nevertheless, the overall results clearly demonstrated
that FGVR is robust enough for practical use.

6.1.2 Factors Affecting Model Accuracy

Data Augmentation. We evaluate how effective data augmentation (DA)
can improve the performance by populating the training images, espe-
cially when training data is limited. Figure 11 shows the recognition
accuracy under different amounts of training samples from 300 to 1500.
It is obvious that data augmentation improves the accuracy significantly,
especially when the training samples are very limited (e.g., < 900). As
the size grows, the accuracy performance becomes stable both with and
without DA, although still slightly higher with DA indicating the model
generalization improvement of DA.

Fig. 12. Recognition accuracy with different RoI sizes.

Fig. 13. False rate and latency with different number of trials.

RoI Size. The RoI size (the length/width of the square) is critical
for achieving the best recognition performance. Smaller RoI size
enables more focused perception of object parts, thus more fine-grained
recognition, but also leads to smaller coverage area, which may miss
the distinguishable parts due to offsets caused by device movements.
In such cases, it produces larger errors. Larger RoI size enables larger
coverage, thus less possible to miss the distinguishable parts, but at the
same time, it also captures more background “noise” and shrinks the
resolution of critical areas for state recognition. We evaluate the impact
of different RoI sizes on the recognition accuracy. Figure 12 shows the
resulting accuracy with RoI size from 1-9 cm. We collect data with RoI
size 1,3,5,7,9 cm. The experiment shows 5 cm to be the optimal size as
it achieves the highest accuracy. Depending on the actual size of the
object, the optimal RoI size may differ. Dynamically choosing RoI size
will be future work.

Recognition Stabilization. It is critical to have stable and accurate
recognition results as any incorrect recognition would trigger irrelevant
animations or instructions in the AR application. This is not only dis-
ruptive but also confuses users, leading to a poor user experience. We
evaluate the false rate (i.e., inaccurate state recognition) and latency
when multiple recognition trials are conducted for each cycle. Recog-
nition trial happens every 300 ms thus one verdict from multiple trials
is fast enough, causing no obvious delay to the user. At least N − 1
trial must indicate the same result out of N trials in a cycle to declare
state result. Figure 13 shows that more trials lowers down the false rate
rapidly at the cost of larger latency. This is because more trials give the
more stable results, thus reducing false results. With 5 trials, the false
rate is less than 0.5%. We choose 5 trials for each recognition circle
to balance the stability and latency. Note that in practical use case, the
object states do not change frequently, 1-2 s latency is negligible.

6.2 Comparison with Existing Approaches
Accuracy Comparison. We compare the performance of LW, DCL
models and a representative object recognition model VGG16 [30]. As
RoI capturing is a key component for FGVR , we also compare the
performance of all models with RoI capturing and raw image frames.
We fine-tune the VGG16 with pre-trained weights from ImageNet [8],
and freeze all the layers except the last two fully connected layers
while training. Figure 14 show the results. With RoI capturing, all
the three models achieved high accuracy (> 97%), and DCL model
has the highest accuracy of 99.87%. The VGG-based model also has
an accuracy of 97.74%, which demonstrates the effectiveness of the

Fig. 14. Accuracy of different models with RoI capturing or using raw
image frames.

Fig. 15. Comparison of accuracy of different models, as the object
becomes more complex, requiring more RoIs.

features extracted by VGG16. The results with RoI capturing are
significantly higher than those using raw image frames as input, which
achieve only ∼ 50% accuracy. This is mainly because of the occlusions
and the lack of fine-granularity. The images may look the same for
some states if the changing parts are occluded, thus causing a lot of
noises in the training and testing data. VGG-based model has the
highest accuracy among the three using raw image frames, even better
than DCL model. This is probably because DCL model takes multiple
“noisy” frames as input, which is more difficult to converge.

Impact of Number of RoIs. As the number of RoI increases, if
the resolution of each RoI does not change, the concatenated image
resolution increases. If the concatenated image resolution is fixed, each
RoI image resolution shrinks. Image with too large resolution may
need to be reshaped to be fit into models such as VGG. We collect
new data on a more complex object, and we manually added more
RoIs. Figure 15 show the results when we have 8, 16, and 32 RoIs.
As the number of RoI grows, VGG model accuracy drops to < 75%
due to the resizing. LW has better performance than VGG at a cost of
increased model size (increasing parameters). The DCL model has the
best performance and only show marginally decrease in accuracy.

Model Size Comparison. The size of a model is critical for it to
be executed efficiently, especially on a resource constrained mobile
device. Figure 16 shows the number of parameters of the three models,
as the number of RoI increases. The VGG-based model has a constant
number of ∼ 14.85 M as the images are resized to a fixed resolution
of 224×224. The DCL model leverages VGG for feature extraction,
thus has more parameters than VGG. The parameter increases by ∼ 1.6
M every additional 9 RoIs (assuming the input image for each branch
consists of 9 RoIs). The LW model has the least parameters when RoI
is fewer than 25, after that it grows significantly faster then DCL model.
Thus, DCL is more suitable for complex objects.

6.3 Generalization of on More Objects
Our visual recognition system is built on top of an in-production AR-
based technical support system with a large volume of users. The
pilot tests consist of experiments on several products, which include
enterprise-level servers, ATM cash dispensers, receipt printers, laptops
and PC motherboards. The tasks cover server CPU replacement, cash
dispenser disassembly, refilling paper of receipt printers, laptop repair
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Fig. 16. The total number of parameters of different models as the
number of RoI increases.

Fig. 17. The accuracy of LW and DCL models on 5 objects.

(e.g., wireless card replacement, SSD removal, battery replacement),
etc. The total testing consists of 30+ procedures and there are 40+ RoIs
are involved, which generates ∼ 7500 recognition results (recognition
result is reported every 2 seconds). Figure 17 shows the boxplot of the
accuracy of both LW and DCL models, both of them are above 95%.
The DCL model has a higher median accuracy over 98%.

6.4 Resource Overhead
The resource consumption is critical for good user experience and
usability. We measure the FGVR resource overhead on an iPhone 8, in
CPU and memory usage. We compare these metrics when the mobile
app is running in different modes: AR only without visual recognition,
AR with LW model inference, and AR with DCL model inference.
Table 1 shows the results of typical measurements for comparison.
The visual recognition only slightly raises the CPU by ∼ 1-1.5%, and
consumes 30+ MB memory. With all the overheads, FGVR can easily
achieve 60 fps, causing no overheating for continuous use.

Mode CPU Memory
AR 7.16% 134.9 MB

AR + LW 8.33% 168.4 MB
AR + DCL 8.67% 178.9 MB

Table 1. Resource consumption under different modes.

7 DISCUSSION

Model Training Overhead. The model training overhead includes two
aspects: data collection overhead and computation overhead. For data
collection, we either have a dedicated user to scan the object under each
state (each takes ∼ 1− 2 mins) or leverage crowdsourced data from
remote assist sessions. In its current state, the crowdsourced data is
noisy and requires manual pre-processing. Knowledge induction and
automatic model training from such noisy data is one of our future
work goals. For computation overhead, all the data collected on the
mobile device is a “byproduct” of AR, thus causing minimum additional
overhead. Model training is also light-weight in the backend due to the
relatively small data amount for a given object.

More Sophisticated Models. The DCL model in our current design
leveraged VGG16 with pre-trained weights from ImageNet as the base

model, which yields reasonable results. Training a base model based
on domain specific data set could further improve the accuracy and
efficiency. Additionally, more sophisticated neural networks, such
as spatial temporal graph convolutional networks, are promising to
improve the performance [35].

Limitations. We discuss the limitations of current design and future
directions.

1) Feature-less object appearances. The current design has short-
comings when dealing with objects with limited feature points, such as
objects with large glossy surfaces. In such cases, AR tracking usually
becomes unreliable as well, so this limitation is not specific to our work
alone. For hardware repair scenarios, however, the focus areas tend
to be inside the machines, which are usually very rich in features, and
therefore, this limitation does not impact the utility of our system in
technical support settings. Improving the robustness on feature-less
objects will be our future work.

2) Minor vs. major appearance changes. In current design, we rely
on the content creator to determine whether the appearance changes
between steps are minor or major during data collection to prepare the
data for coarse-grained state recognition model training, and create an
AR reference object model after each major change. We would like to
explore automating this process as future work to eliminate the need
for input from content creators.

8 CONCLUSION

In this paper, we proposed an Active Fine-Grained Visual Recognition
algorithm that combines both 2D video frames and 3D feature points
in AR to recognize the changing visual state of 3D objects, even when
the change is fairly subtle. We showed that it is robust to random
camera movements, and provides reliable and stable visual recognition
results by implementing and testing it through an iOS-based mobile
application for hardware maintenance. As the next step, we plan to
run user studies to test the effectiveness of state detection in terms
of speeding up user tasks and reducing errors during hardware repair
process.
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Fig. 16. The total number of parameters of different models as the
number of RoI increases.

Fig. 17. The accuracy of LW and DCL models on 5 objects.

(e.g., wireless card replacement, SSD removal, battery replacement),
etc. The total testing consists of 30+ procedures and there are 40+ RoIs
are involved, which generates ∼ 7500 recognition results (recognition
result is reported every 2 seconds). Figure 17 shows the boxplot of the
accuracy of both LW and DCL models, both of them are above 95%.
The DCL model has a higher median accuracy over 98%.

6.4 Resource Overhead
The resource consumption is critical for good user experience and
usability. We measure the FGVR resource overhead on an iPhone 8, in
CPU and memory usage. We compare these metrics when the mobile
app is running in different modes: AR only without visual recognition,
AR with LW model inference, and AR with DCL model inference.
Table 1 shows the results of typical measurements for comparison.
The visual recognition only slightly raises the CPU by ∼ 1-1.5%, and
consumes 30+ MB memory. With all the overheads, FGVR can easily
achieve 60 fps, causing no overheating for continuous use.

Mode CPU Memory
AR 7.16% 134.9 MB

AR + LW 8.33% 168.4 MB
AR + DCL 8.67% 178.9 MB

Table 1. Resource consumption under different modes.

7 DISCUSSION

Model Training Overhead. The model training overhead includes two
aspects: data collection overhead and computation overhead. For data
collection, we either have a dedicated user to scan the object under each
state (each takes ∼ 1− 2 mins) or leverage crowdsourced data from
remote assist sessions. In its current state, the crowdsourced data is
noisy and requires manual pre-processing. Knowledge induction and
automatic model training from such noisy data is one of our future
work goals. For computation overhead, all the data collected on the
mobile device is a “byproduct” of AR, thus causing minimum additional
overhead. Model training is also light-weight in the backend due to the
relatively small data amount for a given object.

More Sophisticated Models. The DCL model in our current design
leveraged VGG16 with pre-trained weights from ImageNet as the base

model, which yields reasonable results. Training a base model based
on domain specific data set could further improve the accuracy and
efficiency. Additionally, more sophisticated neural networks, such
as spatial temporal graph convolutional networks, are promising to
improve the performance [35].

Limitations. We discuss the limitations of current design and future
directions.

1) Feature-less object appearances. The current design has short-
comings when dealing with objects with limited feature points, such as
objects with large glossy surfaces. In such cases, AR tracking usually
becomes unreliable as well, so this limitation is not specific to our work
alone. For hardware repair scenarios, however, the focus areas tend
to be inside the machines, which are usually very rich in features, and
therefore, this limitation does not impact the utility of our system in
technical support settings. Improving the robustness on feature-less
objects will be our future work.

2) Minor vs. major appearance changes. In current design, we rely
on the content creator to determine whether the appearance changes
between steps are minor or major during data collection to prepare the
data for coarse-grained state recognition model training, and create an
AR reference object model after each major change. We would like to
explore automating this process as future work to eliminate the need
for input from content creators.

8 CONCLUSION

In this paper, we proposed an Active Fine-Grained Visual Recognition
algorithm that combines both 2D video frames and 3D feature points
in AR to recognize the changing visual state of 3D objects, even when
the change is fairly subtle. We showed that it is robust to random
camera movements, and provides reliable and stable visual recognition
results by implementing and testing it through an iOS-based mobile
application for hardware maintenance. As the next step, we plan to
run user studies to test the effectiveness of state detection in terms
of speeding up user tasks and reducing errors during hardware repair
process.
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