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Fast and Resilient Indoor Floor Plan
Construction with a Single User

Ruipeng Gao, Bing Zhou, Fan Ye, and Yizhou Wang

Abstract—Lacking of floor plans is a fundamental obstacle to ubiquitous indoor location-based services. Recent work have made
significant progress to accuracy, but they largely rely on slow crowdsensing that may take weeks or even months to collect enough
data. In this paper, we propose Knitter that can generate accurate floor maps by a single random user’s one hour data collection
efforts, and demonstrate how such maps can be used for indoor navigation. Knitter extracts high quality floor layout information from
single images, calibrates user trajectories and filters outliers. It uses a multi-hypothesis map fusion framework that updates landmark
positions/orientations and accessible areas incrementally according to evidences from each measurement. Our experiments on 3
different large buildings (up to 140× 50m2) with 30+ users show that Knitter produces correct map topology, with landmark location
errors of 3 ∼ 5m and orientation errors of 4 ∼ 6◦, both at 90-percentile. Our results are comparable to the state-of-the-art at more than
20× speed up: data collection in each of the three buildings can finish in about one hour even by a novice user trained just a few
minutes.

Index Terms—floor plan construction, indoor location-based services.
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1 INTRODUCTION

Lacking of floor plans is a fundamental obstacle to
ubiquitous location-based services (LBS) indoors. Service
providers (e.g., Google Maps [2]) have to conduct expen-
sive and time-consuming business negotiations to collect
the floor plans from building owners/operators, or hire
dedicated personnel to measure such data inch-by-inch with
expensive and specialized hardware. Both incur high logis-
tic and financial costs, and neither is conductive to large-
scale coverage in short time.

Recently some academic work have made admirable
progress to automatic floor plan construction. They require
only commodity mobile devices (e.g., smartphones) thus
scalable construction can be achieved by crowdsensing data
from many common users. Among others [3]–[6], CrowdIn-
side [7] uses mobility traces to derive the approximate
shapes of accessible areas; realizing that inertial and WiFi
data are inherently noisy thus difficult to produce precise
and detailed maps, a recent work Jigsaw [8] further includes
images to generate highly accurate floor plans.

Despite such progress, these approaches usually require
large amounts of data, crowdsensed from many random
users piece by piece, resulting in long data collection time
(weeks or even months) before maps can be constructed.
In this paper, we propose Knitter, which can construct
complete, accurate floor plans within hours. Even in large
complex environments such as shopping malls, the data
collection for a level takes only about one man-hour’s effort.
Instead of crowdsensing the data from many random users,
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Knitter requires only one user to walk along a loop path
inside the building to collect small amounts of measurement
data. Knitter is highly resilient to low user skill and thus
data quality: with just a few minutes’ practice, a novice user
can collect data that produce maps at quality comparable
with well trained users.

The greatly improved speed and resilience using sparse
and noisy data are made possible by several novel tech-
niques. A single image localization method extracts high
quality relative spatial relationship and geometry attributes
of indoor places of interests (POIs, such as store entrances
in shopping malls, henceforth called landmarks). This greatly
reduces the amount of data needed. Image-aided calibration
and optimization-based cleaning methods correct noises in
user trajectories, and align them on a common plane. Thus
outliers causing significant skews are identified and filtered.
Instead of making a single and final “best” guess of map
layout [8], which becomes accurate only after large amounts
of data, Knitter takes multi-hypothesis measurements. It ac-
cumulates measurement evidences upon each data sample,
updates parallel possibilities of map layouts incrementally,
and chooses those supported by the strongest evidences.
Collectively these techniques enable Knitter to produce
complete and accurate maps using sparse and noisy data
from novice users. We then demonstrate how such maps
can be used to help users navigate and reach particular
destinations indoors. Specifically, we make the following
contributions:

• We develop a novel localization method that can
extract the user’s relative distance and orientation
to a landmark using a single image, and produce
multiple hypotheses about the landmark’s geometry
attributes.

• We devise image-aided angle and stride length cali-
bration methods to reduce errors in user trajectories,
and optimization-based discrepancy minimization to
align multiple trajectories along the same loop path,
thus detecting and filtering outliers.
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• We propose an incremental floor plan construction
framework based on dynamic Bayesian networks,
and design algorithms that update parallel map lay-
out possibilities using evidences from measurement
data, while tolerating inevitable residual noises and
errors.

• We devise a landmark recognition algorithm that
combines complementary data to determine mea-
surement/landmark correspondence, methods for
accessible area confidence assignment under sparse
data, and a topology-based navigation approach that
gives turn-by-turn instructions to users to reach in-
door destinations, none fully addressed in previous
work.

• We develop a prototype and conduct extensive ex-
periments in three kinds of large (up to 140× 50m2),
typical indoor environments: featureless offices and
labs, and feature-rich shopping malls, with 30+ users.
We find that Knitter achieves accuracy comparable
to the state-of-the-art [8] (e.g., position errors of
3 ∼ 5m and orientation errors of 4 ∼ 6◦, both at
90-percentile), with more than 20× speed up that
costs only one hour’s efforts of a single user in
each building. Our reconstructed maps can also be
directly used for localization, with the 90-percentile
position errors around 2m.

2 OVERVIEW

Knitter takes several components in system measurements,
map fusion framework, and compartment estimation to
produce the final map (shown in Figure 1) .
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Fig. 1. Knitter contains several components to produce complete and
accurate maps by a single random user’s one hour data collection
efforts.

Three system measurement techniques are devised to
produce inputs to the map fusion framework from sensing
data: 1) single image localization extracts a landmark’s geom-
etry information, including its relative orientation, distance
to the user, and its adjacent wall segment lengths from
one image; 2) trajectory calibration leverages the image lo-
calization results to reduce user trajectory angle and stride
length errors, then trajectory cleaning quantifies the trajectory
quality and uses alignment and clustering to detect and
filter outliers; 3) landmark recognition combines image, iner-
tial and WiFi data of complementary strengths to determine
which measurement data corresponds to which landmark,
thus ensuring correct map update. The map fusion framework
fuses previous measurement results to create maps under a
dynamic Bayesian network formulation. It represents multi-
ple possible map layouts each with different estimations of
landmark positions as hidden states, represented by random
variables, infers and updates their probability distributions
incrementally, using evidences upon each additional mea-
surement. The compartment estimation combines evidences
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Fig. 3. Estimation of distance d.

from different kinds of measurements to properly assign
accessible confidences to cells in an occupancy grid, such
that estimations of compartment (e.g., hallways, rooms)
shapes and sizes are accurate even with small amount of
data.

3 LOCALIZATION VIA A SINGLE IMAGE

Single image localization estimates the relative distance d
and orientation θ of the user to a landmark in photo (shown
in Figure 2). It also produces multiple hypotheses of the
landmark’s geometry attributes, with a weight (probability)
for each hypothsis’ measurement confidence. Such output
is fed to the map fusion framework. Unlike most vision-
based localization work [9] that relies on image matching to
a database of known landmarks, we use line extraction and
do not need any prior benchmark images.
Pre-processing. First we use Canny edge detector [10] to ex-
tract line segments (Figure 4(c)) from an image (Figure 4(a)).
We cluster them [11] and find the vanishing point (VP)
where the wall/ground boundary line and horizon line
intersect, and obtain its pixel coordinates (u, v).
Estimating θ. Based on projective geometry, we can com-
pute the relative orientation angle θ of the landmark to the
camera using the vanishing point’s coordinates:

θ = π −mod(arctan(
u− W

2

f
), π) (1)

whereW is the image width in pixels, f is the camera’s focal
length in pixels computed from the camera’s parameter
specifications.
Estimating d. Assuming the user points the camera down-
wards (or upwards) at an angle α (shown in Figure 3), d can
be computed as:

tanα =
h0
f
, tanβ =

hb
f
, d = hu · cot(α+ β) (2)

where h0 denotes the vertical distance of the horizon line
to the image center, derivable from (u, v), hb the vertical
distance from the image center to the boundary line (both
marked in Figure 4(c)), and hu is the actual camera height
which can be approximated using the user’s height (input
by the user or estimated).

Computing hb in Equation 2 requires us to identify the
floor-wall boundary line (Figure 4(c)). This is not straight-
forward because there may exist many other lines that
are parallel to the true boundary. Reliably distinguishing
them from the real one is difficult. We first develop a
conventional approach based on intersection counting to
produce multiple hypotheses of floor-wall boundary so the
correct one is included with high probability, then improve
it with orientation map for robustness.
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Fig. 4. Extracted horizon line and boundary line on the example image
(better viewed in color). Red circles denote farthest intersection points
between vertical line segments and boundary line.

Conventional approach: intersection counting. After careful
observation, we find that the boundary line is usually quite
long and has many intersections with vertical line segments
(e.g., points denoted in circles in Figure 4(c)), far more
than other parallel lines. We compute a weight wli for each
candidate line li as:

wli =
Nli · Lli
|dli − d̃|

(3)

where Nli denotes the number of intersection points be-
tween li and vertical line segments, Lli the length of li, dli
is the photo-taking distance estimated using li and d̃ is the
recommended distance (to be elaborated in Section 9). The
numerator indicates how strong a candidate line is, and the
denominator filters out incorrect guesses with large devi-
ations to the guideline of medium photo-taking distances.
The weights are then normalized to become probabilities.

Improved approach: orientation map. We first generate an
orientation map [12] (Figure 4(b)) where the orientation of
each surface is computed and its pixels colored accordingly.
Given a floor-wall boundary candidate li, we compute the
fraction of wall and floor pixels with consistent orientations
as the weight:

wli =
S+
floor + S+

wall

Sallfloor + Sallwall
(4)

where S+
floor and S+

wall denote the floor/wall pixel areas
whose orientations conforming to li (i.e., above li are walls
facing sidewards and below li are floors facing upwards),
Sallfloor and Sallwall the respective total pixel areas. The correct
candidate should have the best consistency, thus greatest
weight.
Estimating (wL, wR). Along a boundary line, we detect
intersection points with vertical line segments. The left- and
right-farthest intersection points are identified in Figure 4(c),
and their horizontal pixel distances (wpL, w

p
R) to the image

center are transformed into left and right wall segment

lengths (wL, wR) based on projective geometry:

wL,R =
d · sin(arctan(

wp
L,R

f ))

sin(θ ∓ arctan(
wp

L,R

f ))
(5)

Now we have multiple hypotheses, each having a
boundary line, user distance/angle, and two wall segment
lengths, with a weight (probability). Detailed evaluations
(Section 9) show that this localization method generates
quite small errors (< 1m) even at remote distances (> 10m).

4 TRAJECTORY CALIBRATION AND CLEANING

Accurate user trajectories from inertial data are critical in
floor plan construction. In Knitter, the user walks along a
closed loop path multiple times, taking landmark photos
and collecting inertial data. Each loop may take about
10 minutes. Significant errors may accumulate during the
long walk, and frequent stops to take landmark photos
may create severe inertial disturbances, both resulting in
deformed, inaccurate trajectories. We must be able to rectify
such errors.

4.1 Trajectory Calibration
We tested two trajectory construction methods: a gyroscope
based (Zee [13] and UnLoc [14]) and a recent phone atti-
tude one (A3 [15]). Although the step counts are relatively
accurate, neither produces satisfactory trajectories due to
walking direction errors. Figure 5(b) and 5(c) show their
results for a 5-minute walk (Figure 5(a)). The main reasons
are: 1) the gyroscope has significant drifts over long walking
periods; 2) during long, straight walk, there are few cal-
ibration opportunities of similar changes in compass and
gyroscope as required in A3 [15]; 3) strong electromagnetic
disturbances (e.g., server rooms [16]) can cause false “cali-
brations.” We propose image aided methods to calibrate the
angles and stride lengths, thus accurate walking direction
and trajectories (Figure 5(d)).
Image-aided Angle Calibration. We leverage “closed
loops” to estimate an average gyroscope drift rate δ. After
finishing a loop, the user returns to the starting area and
takes a second photo of the first landmark. Using single
image localization, we compute two angles θ1, θ2 based
on Equation 1 for both images of that landmark. Their
difference ∆θ = θ1−θ2 is the orientation angle change. Since
the user may not return perfectly to the starting point, this
will cause an additional change in user orientation, which
can be measured by the difference of the gyroscope’s “yaw”
between the two images, denoted as ∆g. The rate δ and
calibrated angle g∗t are computed as:

δ =
∆g + ∆θ

T
, g∗t = gt + δ · t (6)

where T is the time between taking the two images. We find
this method is not affected by electromagnetic disturbances;
it always achieves accurate and robust angle calibration (∼
5◦ errors at 90-percentile).
Image-aided Stride Length Calibration. We leverage the
closed loop to calibrate the stride length that may change in
different regions, e.g. larger in wide and open hallways [7].
Our localization method can compute the user’s relative
location to the first landmark, thus the location change
before and after the loop can be computed as a vector ~v
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Fig. 5. Trajectories from (a) ground truth with 6 photo-takings; (b) gyro-
scope based [13], [14]; (c) phone attitude [15]; (d) image-aided angle
calibration.

(a) (b) (c) (d)
m m m m

Fig. 6. (a) raw trajectory for a closed loop; (b) angle calibration only; (c)
stride length calibration only; (d) both calibrations.

pointing from the start to the end location. We compensate
each point at time t on the trajectory with ~v · t/T to calibrate
stride length errors. Figure 6 shows that both angle and
stride length calibrations are needed to produce an accurate
closed loop trajectory (Figure 6(d)).

4.2 Trajectory Cleaning

Calibration only rectify trajectories with small errors, but
not outliers. We conduct the following three steps to detect
and filter out such outliers: loop screening, loop alignment,
and outlier removal.
Loop Screening. We use the “gap”, the distance between
the starting and ending locations of the angle-calibrated
loop for preliminary screening. Since the user returns to
the starting area, ideally the gap should be 0 after image
compensation. A lower quality loop has a larger gap. Given
multiple trajectories, we compute the standard deviation σ
of the calibration shift vector’s length |~v| normalized over
the size of the trajectory, and remove those with |~v| beyond
3σ. 1

Loop Alignment. Multiple trajectories must be placed
within the same global coordinate system. However, the tra-
jectories can not overlap perfectly with each other. Each time
the exact path may differ slightly within the same hallways

1. According to Chebyshev’s Theorem, this removes those trajectories
with extreme errors beyond 88.9% of all loops.

or isles, so do the stride lengths. Thus the trajectories have
slightly different shapes and possibly scales.

Without loss of generality, we consider how to place a
second trajectory with respect to an existing one. Initially,
we pick the one with the smallest gap as a reference loop,
and use landmark recognition (Section 6) to detect which
landmark ci on the second loop corresponds to landmark i
on the reference loop. This addresses situations where the
user takes photos of slightly different sets of landmarks in
each loop (due to negligence or imperfect memory). Then
we translate, rotate and scale the second one to achieve “max-
imum overlap” with the first one, as defined by minimizing
the overall pairwise distances of corresponding landmarks:

{φ∗, O∗, s∗} = argmin
φ,O,s

N∑
i=1

‖s ·R(φ) · (M2
ci−O)−M1

i ‖2 (7)

where M1
i = X1

i + Z1
i and M2

ci = X2
ci + Z2

ci denote the
coordinates of the ith landmark in the reference loop and
the corresponding landmark ci in the second loop, X1

i and
X2
ci are the coordinates of photo taking locations of them,

Z1
i and Z2

ci are the relative locations from the user to the
landmark (from single image localization). {φ,O, s} denote
the rotation, translation and scale factors to the second

trajectory, and R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
is the rotation

matrix. A simple greedy search for an initial solution fol-
lowed by iterative perturbation can find the approximate
solutions for the three parameters. Each additional trajectory
is placed similarly within the common coordinate system. 2

Outlier Removal. After all trajectories and landmark sets
are placed on the same coordinate system, we identify
the common subset of sm landmarks across all loops. We
represent those in loop k with a multi-dimensional vector
(mk

s1 , ...,m
k
sm), where mk

si is landmark si’ location, and
compute the Euclidian distance between each two vectors.
Then we use a density-based clustering algorithm DB-
SCAN [17] to eliminate outlier loops: vectors are “reach-
able” to each other if the distance is within an empirically
decided threshold ε = 0.8m, those not reachable from any
other vector are detected as outliers, and respective loops
removed.

5 MAP FUSION FRAMEWORK

5.1 Dynamic Bayesian Network
We use a Dynamic Bayesian Network framework to fuse
the extracted information from previous measurement algo-
rithms to build maps incrementally. It formally represents
different states in the floor plan construction process as ran-
dom variables, and denotes their dependence using arrows
(shown in Figure 7). We assume time is slotted. At each time
t, xt denotes the user pose (i.e., camera/phone coordinates
and orientation); ut is the control including the walking
distance and heading direction that alter the user pose from
xt−1 to xt; zt is measurement of the landmark by the user
(e.g., relative distance d and angle θ);mct are the coordinates
and orientation of the landmark being measured, ct = j
(j = 1, ..., N ) is the index of this landmark as detected by
landmark recognition (Section 6).

2. We also tried to place each trajectory w.r.t. all previous ones but
find the much increased complexity brought only marginal improve-
ments. Thus we use the much simpler method as in Eqn 7.
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In the above, ut and zt are observation variables that can be
measured directly from sensors, while xt and mj are hidden
variables that must be computed from observation ones.
These variables are represented by probability distributions.
Given control signal u1:t (shorthand for u1, ..., ut) and mea-
surements z1:t, the goal is to compute the posterior (i.e.,
conditional) probability of both landmark positions m1:N

and user poses x1:t, i.e. p(x1:t,m1:N |u1:t, z1:t).

zt-1xt-1

ztut xt

mj

User pose LandmarkControl Measurement

time t-1

time t

Fig. 7. Dynamic Bayesian Network. Gray nodes (user/landmark states)
are hidden variables to be computed, and unshaded ones are obser-
vation variables measured directly. Arrow directions denote determining
relationship, solid for movement update and dashed for landmark up-
date.

5.2 Particle Filter Algorithm
We use a particle filter algorithm to compute the above user
poses and landmark attributes incrementally. We maintain
a collection of K “particles.” Each particle k (k = 1, ...,K)
includes a different estimation of:

• user pose xt: user’s coordinates (x, y) and heading
direction ϕ,

• each landmark’s mean µ and covariance Σ of its
coordinates and orientation (µx, µy, µφ), assumed
multivariate Gaussian distribution,

• two adjacent wall lengths (wL, wR) of each land-
mark.

At each time slot, we perform 5 steps to update the states in
each particle k.

1. Movement Update: given the previous user pose xt−1

at time t − 1 and recent control ut = (v, ω) where v is
the moving speed and ω the heading direction (obtained
from trajectory measurement algorithms in Section 4), the
destination is computed by dead reckoning. The current
pose xt is computed by picking a sample from a multivariate
Gaussian distribution of many possible locations around the
destination (Figure 8):

x
[k]
t ∼ p(xt|x

[k]
t−1, ut) (8)

2. Landmark Recognition: a new measurement zt of a
nearby landmark mct is made at t, and ct is identified as
j (j ∈ {1, ..., N}) by the landmark recognition algorithm
(to be elaborated in Section 6). If mj is never seen before, a
new landmark is created, with coordinates and orientation
computed based on user pose xt and relative distance, angle
in zt.

3. Landmark Update: If mj is a known landmark, its
states are updated. Assuming the most recent attributes of
landmark mj are µt−1

j and Σt−1
j , where µt−1

j = (µx, µy, µϕ)
are its coordinates and orientation in the global coordinate
system, and Σt−1

j the corresponding 3×3 covariance matrix.

• STEP 3-1: measurement prediction. Given a user pose
xt = (x, y, ϕ) at time t and mj ’s attributes µt−1

j at
t− 1, a measurement prediction ẑt about the relative

Movement 

update

Measurement

Landmark 

update

User pose

Landmark state 

Previous

Current
Current

Previous

Fig. 8. A current user pose is computed based on the previous pose and
control signal. Then a landmark’s state is updated using a measurement
from the new user pose.

distance and angle between the user and mj can be
made as:

ẑt =

(
d̂

θ̂

)
=

( √
(µx − x)2 + (µy − y)2

µϕ − ϕ

)
(9)

simply their differences in coordinates and orienta-
tions.

• STEP 3-2: measurement observation. Given mj ’s image,
the localization algorithm (Section 3) generates mul-
tiple hypotheses of (d, θ), each with a weight. We
pick one hypothesis at probabilities proportional to
their weights as the actual measurement zt = (d, θ)T .

• STEP 3-3: attributes update. We leverage the Extended
Kalman Filter (EKF) [18] algorithm to update the
observed landmark. It linearizes the measurement
model (Eqn. 9) such that measurement errors become
linear functions of noises in user pose and landmark
attributes. Then it computes the “optimal” distribu-
tion of hidden variables (e.g, landmark attributes)
given observations, such that the discrepancies be-
tween predicted and actual measurements are mini-
mized.
Step 1: The Kalman gain K is computed as:

K = Σt−1
j HT (HΣt−1

j HT +Qt)
−1 (10)

where H is the 2× 3 Jacobian matrix of ẑt, with ele-
ments partial derivatives of (d̂, θ̂) w.r.t. (µx, µy, µϕ),
andQt is a 2×2 covariance of Gaussian measurement
noises in (d, θ).
Step 2: The mean and covariance of mj are updated
as:

µtj = µt−1
j +K(zt − ẑt),Σtj = (I −KH)Σt−1

j (11)

where I is a 3× 3 unit matrix.

Figure 8 shows that after the update, the uncertainties
(quantified by covariances represented in oval sizes) in a
landmark’s location and orientation become less and the
distributions become more concentrated. To simplify the
wall length estimation, we use an weighted average of
(wt−1

L (t − 1) + wL)/t as the updated wall length wtL for
landmark mj (wR computed similarly). We find the results
are sufficiently accurate.

4. Weight Update: we assign each particle k a weight
that quantifies the probability (Eqn. 12) that the actual
measurement zt can happen under the user pose x[k]t and
updated landmark states (µtj ,Σ

t
j). The larger the probability,

the more likely that the estimated user pose and landmark
attributes are accurate.

w[k] = p(zt|x[k]t ,mj)

= |2πQ|− 1
2 exp{−1

2
(zt − ẑt)TQ−1(zt − ẑt)}

(12)
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Under Gaussian noises and linearization approxima-
tion [19], the weight can be computed in closed form of the
actual measurement zt and its prediction ẑt. A prediction ẑt
closer to actual zt leads to a larger weight.

5. Resampling: After the weights for all particles are
computed, a new set of particles is formed by sampling K
particles from the current set, each at probabilities propor-
tional to their weights. The above steps are repeated on the
new set for the next time slot.

6 LANDMARK RECOGNITION

Landmark recognition detects which landmark is measured
in the current data sample: a new one never seen before,
or an existing one already known. Incorrect recognition
will cause wrong updates, thus possibly large errors or
even incorrect map topology. We take advantage of multiple
sensing modalities of complementary strengths for robust
recognition: images capture the appearances; poses depict
the spatial relationships, and WiFi identifies radio signa-
tures.

Image Based Recognition. Given a test image, we ex-
tract its features and compare with those from images of
existing landmarks, then determine whether it is a new or
existing one. We use a standard image feature extraction
algorithm [20] to generate robust, scale-invariant feature
vectors. Then we identify matched feature vectors to those
from an existing landmark’s image. The image similarity
Simagej to each existing landmark j is computed as the
fraction of matching ones among all distinct feature vectors
in the test image and landmark j’s image.

Wi-Fi Based Recognition. Although image features dis-
tinguish complex landmarks well (e.g. stores and posters),
they are ineffective in homogeneous environments such as
office and lab, where doors have very similar appearances.
Noticing that landmarks are chosen such that adjacent ones
are far apart (e.g., 10m or more) while users take pho-
tos close by landmarks, thus WiFi signatures are distinct
enough for each landmark. We use the first loop data
as benchmark and record the RSS vectors

−−→
RSSj for each

landmark j, and use the cosine distance to quantify the radio
signature similarity Swifij between landmark j’s data and
the test data

−−→
RSStest in subsequent loops:

Swifij =

−−→
RSStest ·

−−→
RSSj

‖
−−→
RSStest‖ ‖

−−→
RSSj‖

(13)

where · denotes the inner product, and ‖−→a ‖ represents the
vector magnitude. If an AP is sensed and exists in only one
vector, we give it a very small value (e.g., −200dBm) in the
other vector so both vectors have the same dimensions for
computation.

Pose Based Recognition. Given the user pose xt and
landmark attributes (e.g., coordinates and orientation), a
relative distance/orientation ẑt can be predicted from Equa-
tion 9. The correct landmark j should make this prediction
very close to the actual measurement. Based on this intu-
ition, we use the conditional probability that zt can occur
given xt and mj ’s location/orientation as the metric Sposej ,
which is exactly the same as weight w[k] in Equation 12.

Aggregate Similarity. An aggregate similarity is com-
puted as Simagej ·Swifij ·Sposej . Since images, WiFi and inertial
data are independent from each other, the probability the
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Fig. 9. Recognition results for 18 landmarks in the mall during the
second loop.
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Fig. 10. Combining different evidences for compartment estimation of
hallways.

landmark being j is proportional to the product of the three
similarity scores. The product form implies that a small
score in any of the three is a strong indication of incorrect
match, and the true match would have high scores in all the
three.

Using the shopping mall in evaluation (Section 9) as an
example, first we collect one loop data as benchmark, and
Figure 9 shows the recognition results for 18 landmarks
of the second loop. We observe that the recognition using
any individual modality can fail: e.g., pose/WiFi for nearby
landmarks 15 and 16, and image for glass walls (landmark 2)
or similar appearances (landmark 6 to 5). Aggregating them,
however, achieves 100% accuracy (more results in Section 9).

7 COMPARTMENT ESTIMATION

Besides landmarks, a complete floor plan includes also ac-
cessible compartments such as hallways and rooms. A com-
monly adopted technique is occupancy grid mapping [21]:
divide the floor into small cells and accumulate evidence
on each cell’s accessibility to identify compartments. While
existing work [7], [8] uses plenty of trajectories, we have
only a handful, too sparse to infer accessible areas directly.
We make two adaptations to compensate data sparsity: 1)
instead of a fixed confidence in cells, we spread attenuating
confidences away from trajectories and detected walls; 2)
we leverage regions between the camera and landmarks to
infer large open regions.

Hallway and Room Shapes. Since only a few trajectories
are gathered, they are too sparse to cover all accessible areas.
We assign each cell a confidence that increases as it gets
closer to a nearby trace or wall segment, because cells closer
to traces or walls are more likely accessible. Areas traversed
by multiple traces will accumulate more confidence, thus
more likely to be accessible. Figure 10(a) shows two types of
hallway boundaries: detected walls have larger probabilities
(darker shades) and inferred ones smaller probabilities. One
hallway segment is missing because it does not have any
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Fig. 11. A warping between two
time sequences.

Fig. 12. Voronoi diagram.
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Fig. 13. Navigation problems in the leader-follower approaches.

landmarks, thus no walls detected. The missing part is made
up from trajectories (Figure 10(b)). We then use a closed
loop walking inside each room to reconstruct its shape, and
leverage landmark recognition to associate such traces with
respective rooms and place their contours on the map.

Large Open Regions. Large open regions (e.g., lobbies)
need many traces to cover its cells. We leverage the images
to infer their sizes. Since the user needs to ensure the
landmark is not occluded by obstacles, the region between
the camera and the landmark is usually accessible. Thus
we compute the triangle region between the camera and
landmark (including adjacent wall segments), and assign
a fixed confidence to all cells in this area. Figure 10(c)
shows the occupancy grid map with a lobby area filled with
dark triangles from additional images, without which there
would be a blank hole on Figure 10(b).

8 INDOOR NAVIGATION USING KNITTER

In this section, we illustrate how we can leverage the maps
built by Knitter for indoor navigation, one critical location
based service.

8.1 Conventional Approaches without Maps

Since indoor maps are not always available and com-
plete, some latest approaches (e.g., FollowMe [22] and
TraviNavi [23]) have leveraged a leader-follower mode for
indoor navigation without the map. Noticing that the trace
length between the leader and the follower may not be
exactly the same. They exploit certain building entrances
as fixed starting points, and use the Dynamic Time Warping
(DTW) [24] model to align and measure the similarity be-
tween the leader’s trace and the follower’s trace. Figure 11
illustrates how they match two time sequences of traces.
Specially, a reference trace is collected with the leader’s
smartphone (including the inertial data, geomagnetic read-
ings, and WiFi signatures), then they use dynamic pro-
gramming algorithm to synchronize the follower’s walking
trace with the reference trace by matching their geomagnetic
and/or WiFi signatures.

Observations: we have installed some applications that
adopt this leader-follower model (e.g., FollowMe [25]) on

Android phone Samsung Galaxy S4, and conducted navi-
gation experiments in different types of indoor buildings.
During investigation, we find there are several limitations
for the leader-follower navigation methods. 1) They always
assume users start only at entrances. If users are already
inside a building and want to start from a midway nav-
igation (e.g., from an office to a meeting room), no refer-
ence traces are recognized and associated. A latest work
ppNaV [26] searches for a locking-on point on the nearest
reference trace and directs the user there. While this allows
the user to start from an internal point, the user still needs
to iteratively turn a circle to refine the forwarding direction
when they encounter a crossing/wall, and judge the path
by themselves. Both present further challenges on the user.
2) The building structure should be regular, e.g., without
small/adjacent turns (Figure 13(a)) or large open regions
(lobby in lab or square in mall), otherwise it may incur large
tracking errors or even incorrect routes. 3) In case users walk
into a wrong path, the remedial navigation instructions are
sometimes unhelpful due to the stride length differences
thus tracking errors accumulate quickly (Figure 13(b)). Next,
we demonstrate how to use Knitter’s reconstructed maps to
provide more robust indoor navigation services.

8.2 Navigation with Knitter

Accurate and complete floor plans are crucial in indoor nav-
igation. It not only improves tracking accuracy by adding
map constrains to user movements, but also pinpoints user
locations on the map and illustrates the optimal route with
surrounding landmarks for reference.

Compared with the conventional lead-follower navi-
gation approaches, using reconstructed maps significantly
improves the robustness. Users with Knitter can start nav-
igation at arbitrary locations inside the building, and we
describe how to obtain optimal route to destination with
detailed navigation instructions.

8.2.1 Critical Point Localization
In Knitter’s map reconstruction process, we have collected
images for landmarks’ critical geometry information, WiFi
for their radio signatures, and inertial data for user’s move-
ments. With these sensory data covering the environment,
we propose a critical point localization method to allow
users start navigation anywhere. Users can simply take a
photo of a nearby landmark to initialize the navigation
starting point, and identify their locations when they get lost
in the building. Our system localizes users in real time upon
photo-taking, and pinpoints them on the map. It consists of
three steps:

Preliminary. First we integrate the landmark database
with sensory data collected during Knitter’s map recon-
struction process. From the map fusion algorithm (Sec-
tion 5), we have obtained each landmark’s position and
orientation information; from the landmark recognition al-
gorithm (Section 6), we have associated landmarks with
images and WiFi signatures. Thus each landmark in the
database contains: 1) position and orientation information
(µx, µy, µφ); 2) SIFT features [20] of images; 3) WiFi sig-
natures. In addition, the landmark database is generated
incrementally: new measurements to a landmark improves
its location accuracy and increases the amount of image
features and WiFi signatures.
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Fig. 14. Topology structure representation of the example office building.

Landmark recognition. When a user takes one photo of a
nearby landmark, the sensory data (e.g., image, inertial data,
and WiFi signatures) are recorded for localization. Similar
to our landmark recognition algorithm (Section 6), we com-
bine multiple sensing modalities for their complementary
strengths to identify the chosen landmark except we also
measure the compass readings for pose similarity.

Position estimation. We employ our single image local-
ization algorithm (Section 3) to compute the user’s relative
position to the recognized landmark. After detecting the
vanishing point and floor-wall boundary on a photo, user’s
relative angle and distance to that landmark are computed
via Equation 1 and 2 with the camera’s parameter specifi-
cations, then we translate them into global coordinates and
display the user’s marker on our map.

Experiment results in Section 9 illustrate that the 90-
percentile position errors of this localization method are less
than 3m in three indoor environments.

8.2.2 Topology Structure Extraction
Building topology structure identifies all paths and cross-
ways in the environment, thus it can provide a formal
structure on which optimal routes can be computed for
navigation. Instead of manually drawing the topology struc-
ture with extensive human efforts, we propose an automatic
topology structure extraction method operating on the re-
constructed floor map.

First we formulate the building topology structure as a
labeled undirected graph G = {N,E}, where N represent
nodes of indoor POIs (Point of Interests), and E are edges
of line segments representing actual paths on the hallway.
Especially, there are three types of nodes for a topology
structure,N = {I/O,L, T}, where I/O for each inlet/outlet
(including stairs and elevators), L for indoor landmarks,
and T for road turns along the passway. Those nodes are
used as references to produce specific guide instructions
during navigation. One example topology structure of an
office building is shown on Figure 14, with 16 landmarks, 8
turns and 2 entrances.

Next we present our topology structure extraction
method. It leverages Knitter’s reconstructed floor map to
automatically generate the building topology structure, in-
cluding two steps:

Step 1: skeletonisation. We leverage the Voronoi dia-
gram [27] to automatically generate a hallway skeleton from
the reconstructed floor map. Hallway skeleton is defined as
the exact middle line to both sides of the hallway contour.
The Voronoi diagram is a geometry algorithm to partition
a plane into regions based on distance to some given
points, and each region represents the space closer to the
corresponding point than to others (Figure 12). Thus given
the complete and coherent contour points of two sides,

the Voronoi diagram will converge to the correct skeleton
immediately.

We use the Canny edge detection [10] to identify the
complete hallway contour with two sides, and extract the
pixel coordinates of each point on the contour. Next we
use the two-side contour points as input, and deploy the
Voronoi diagram to extract hallway skeleton (Figure 15(b)).
At last, we project all landmarks (detected by Knitter) and
entrances (locations where GPS signal fades away) onto the
skeleton based on the shortest Euclidean distance of pixel
coordinates (Figure 15(c)).

Step 2: line-fitting. We propose a line-fitting method to
generate edges for real paths in the building. From each
node in Figure 15(c), we draw a line to fit the skeleton,
and calculate the pixel distance between the line and the
skeleton. The length of the line increases linearly, and ends
until it reaches another node or deviates from the skeleton.
In the latter case, we end the line with a turn node, and try
to generate another line from that turn.

The final topology structure is shown in Figure 15(d).
Then we store the topology structure as a labeled undirected
graph, and leverage the Dijkstra algorithm to produce the
optimal route for navigation.

(a) Reconstructed hallway (b) Contour and skeleton
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Fig. 15. Topology structure extraction process:(a) shows the recon-
structed hallway from Knitter; (b) extracts its contour from Canny edge
detection, and generates its skeleton from Voronoi diagram; (c) projects
all landmarks and entrances onto the skeleton and generates nodes; (d)
uses line-fitting upon the skeleton and generates road turns and edges.

8.2.3 Indoor Navigation Example
For example, suppose a user in Room A203 wants to attend
a meeting in Room B204 (shown in Figure 16), whereas the
two rooms are located at two wings of the office building.
With the conventional leader-follower approach, navigation
can be launched only at the entrance (marked as red lines).
Users may have only paths starting/ending at entrances to
follow, thus may have to follow two paths, first go out from
Entrance A, then go in from Entrance B. Then, following the
navigation instructions with five turns, they finally reach the
destination. Furthermore, in case users walk into a wrong
path, leader-follower approaches may not detect and alert
users in time, and remedial instructions may not be helpful.

In contrast, with the help of Knitter’s reconstructed floor
map, we can automatically generate the detailed building
topology structure with all landmarks, turns and paths
(shown in Figure 15(d)). Thus, if users start at landmark
L2 (Room A203) and target at landmark L6 (Room B204),
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Fig. 16. An indoor navigation example from Room A203 to Room B204.

the Dijkstra algorithm can easily produce the optimal route
L2-T2-L3-L4-L5 (marked as green lines in Figure 16). Dur-
ing navigation, our system exhibits the optimal route on
smartphone with landmarks along the pathway, and users
just follow the guided route and click landmarks’ icons
when passing them. Our reconstructed floor map can also be
integrated with the leader-follower navigation systems, thus
directing users to a locking-on point to the nearest reference
trace in case they are lost in the building.

9 PERFORMANCE EVALUATION

9.1 Methodology
We use iPhone 5s to collect inertial and image data, and
Samsung Galaxy S II for WiFi scans. 3 Our applicable
scenarios are indoor environments with a clear definition
on landmarks for photo-takings, e.g., doors/posters on the
wall. We conduct experiments in three environments: a
90×50m2 office, a 80×50m2 lab building and a 140×50m2

shopping mall, with 16, 24, 18 landmarks respectively.
We evaluate Knitter’s resilience with three user groups:

dedicated users who are well trained (i.e., ourselves); 15 novice
users who spend 5 min practicing data collection follow-
ing two simple guidelines: 1) take images from medium
distances and angles (e.g., ∼5 meters, ∼ 45◦), with the
landmark at the center; 2) during walking, hold the phone
steady; and 15 untrained users who may not follow the
guidelines. Feedback from trained ones suggest the two
guidelines are easy to follow in practice.

9.2 Evaluation of Individual Components
Image Measurements. We first evaluate the accuracy of user
locations relative to the landmark, i.e., the extracted distance
d and angle θ. Using a typical door as an example, we take
images at 32 different locations. Figure 17 shows the bubble
diagram of user localization errors. We observe that: 1) the
conventional intersection counting method has small errors
at medium distances (e.g., 5 ∼ 7m) but beyond which much
larger errors (> 1m); 2) the orientation map method has
very small errors (< 1m) even at faraway distances (> 10m).
Thus we finally decide to use the orientation map to extract
the image and measure the landmark. We still recommend
medium photo-taking distances and angles for better image
matching thus recognition accuracy.

We follow the data-gathering guidelines to collect data in
all three indoor environments. Figure 18(a) and Figure 18(b)

3. iOS public API does not give WiFi scan results.
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Fig. 17. User location errors as bubble sizes at different distances and
angles.
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Fig. 18. Errors in image measurements.

show the distribution of angle and distance errors from
images in three environments. We observe that the angle
measurement errors are around 5◦, and that of distance
within 1m, both at 80-percentile. The maximum angle and
distance errors are about 94◦ and 2.2 meters (due to incorrect
floor-wall boundary detection). The results show that image
extraction in general has high accuracy, but large outliers are
possible. Thus we select the top 3 candidates for floor-wall
boundary, and compute respective distances/angles, wall
segment lengths and weights to form multiple hypotheses
as input to map fusion.

Trajectory Angle Calibration. We compare the image-
aided calibration method against raw compass or gyroscope
readings, and a recent phone attitude A3 [15] method. We
perform experiments in two environments with little/strong
magnetic disturbances, both for an 8-minute walking with
multiple turns and images.

Figure 19(a) shows the angle error CDF with little mag-
netic disturbances. We observe that both A3 and image-
aided calibration achieves accurate angle estimations (∼ 5◦

at 90-percentile, maximum 8◦). Raw gyroscope readings
(curve omitted due to space limit) suffer linear drifts and
reach 32◦ angle errors after the 8-minute walk, and compass
has around 10◦ at 90-percentile.

However, when magnetic disturbances are strong (e.g.,
90-percentile compass errors around 20◦ in Figure 19(b)), the
errors from A3 increases (∼ 12◦ at 90-percentile, maximum
17◦) due to frequent and strong disturbances thus incorrect
calibrations. The image-aided method remains unaffected
and still achieves accurate angle estimation. This demon-
strates the robustness of the image-aided calibration method
in different environments.

Landmark Recognition. We collect 5 loops’ data in all
three environments, and use the first loop data as bench-
mark in each building. Table 1 shows the recognition accu-
racy (percentage of incorrectly identified landmarks) of the
rest 4 loops’ data. We observe that image-based recognition
works well in the mall, but completely fails in office or lab
because the landmarks (e.g., doors) appear almost the same.
The results after aggregating all valid modalities are 100%,
95.8%, and 100%, proving their complementary strengths.
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Fig. 19. Angle errors without and under strong magnetic disturbances.

TABLE 1
Landmark recognition accuracy

Office building Lab building Shopping Mall
Image – – 91.7%
WiFi 89.1% 87.5% 79.2%
Pose 100% 86.2% 86.1%

All sensors 100% 95.8% 100%

9.3 Map Fusion Framework

TABLE 2
Landmark update performance

Loop Mean
loc(m)/ang(◦)

Std
loc/ang

Max
loc(m)/ang(◦)

1 1.31/2.32 0.83/1.97 3.11/6.89
2 1.03/5.6 0.82/3.81 2.38/15.59
3 2.06/2.96 1.44/2.24 3.96/7.77
4 2.19/5.39 1.49/16.8 4.97/84.33
5 1.58/3.18 0.84/3.12 3.23/13.54

All 1.12/2.18 0.68/1.74 2.16/6.97

Landmark Update Performance. We compare the mean,
standard deviation and maximum errors of landmark lo-
cation and orientation using 5 individual loops in lab and
all of them (Table 2). We find that using all loops’ data in
general leads to better mean (except loop 2’s location 1.03m,
only slightly smaller), standard deviation, and maximum
errors, showing more data produce more accurate results.
We have similar observations from experiments in other two
buildings.

Figure 20 shows the changes in maximum, mean and
minimum landmark orientation and location errors as more
loops’ data are used for office (the other two are similar).
We observe that more data reduce errors: e.g., the maximum
errors drop from 9.4◦ to 4.3◦, and 4.3m to 2.7m. Also 3 loops
seem sufficient: the mean errors (3◦ and 1.7m) do not further
improve much. Thus we do not need many loops in each
environment.

Untrained, Novice and Dedicated Users. The final ori-
entation and location errors of landmarks from untrained
users are shown in Figure 21, before (Figure 21(a)(e)) and af-
ter (Figure 21(b)(f)) trajectory cleaning (TC). Figure 21(c)(g)
show the final results for novice users, and Figure 21(d)(h)
show those for dedicated users. We make several obser-
vations: 1) untrained users have much larger errors (Fig-
ure 21(a)(e)), e.g., 4◦ ∼ 12◦ and 5 ∼ 7m errors at 90-
percentile before trajectory cleaning. 2) Trajectory cleaning
is quite effective for both untrained and novice users. E.g.,
it cuts down orientation errors by 6◦ and location errors
by 2m for untrained users at 90-percentile (Figure 21(b)(f)).
3) after trajectory cleaning, novice users (Figure 21(c)(g))
achieve accuracies comparable to dedicated users (slightly
higher 4◦ ∼ 6◦ vs. 3◦ ∼ 5◦ and 3 ∼ 5m vs. 2 ∼ 4m at
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Fig. 20. Landmark placement errors with different number of loops data.

90-percentile), and untrained users have about 2◦ and 2m
more in maximum error.

Examination shows that larger errors from untrained
users are mainly caused by careless or impatient data collec-
tion, e.g., not holding the phone steady, swinging the phone,
changing stride lengths suddenly, and taking photos under
extreme bright/dark lights or with motion. While novice
users exhibit more care and their data have better quality,
thus achieving results comparable to dedicated users. This
shows the resilience of Knitter: a novice user with a few
minutes’ training can produce quality maps.

Multi-hypothesis Measurement. Although the image
measurement is shown to be quite reliable, incorrect bound-
ary line can cause occasional large errors. Figure 22(b)
shows 3 hypotheses for a landmark measurement. The top
one is a decoration line on the floor but has the highest
probability (P=0.48); it has 3.6m and 84.5◦ errors. The correct
one is the second (P=0.35) and the third one (P=0.17) is
very close to the correct boundary line. The initial errors
of the landmark is 2.8m and 14.3◦ (Figure 22(a)). When only
the top hypothesis is used for update, the errors become
even larger (3.2m and 32.7◦ in Figure 22(c)). When all the
three hypotheses are used, the particle filter resampling can
suppress the incorrect hypothesis and improve the accuracy
to 1.3m and 9.5◦. This illustrates the effectiveness of multi-
hypothesis input.

Figure 23 show the errors using top hypothesis only.
Compared to Figure 21 where all hypotheses are used,
the orientation errors increase significantly (e.g., maximum
from 6◦ to 28◦), so do location errors (especially for the
mall, maximum from 4m to 8m). Due to many visual distur-
bances (e.g., decoration strips on the floor, glass windows
and doors) in complex environment like malls, incorrect
boundary lines can become the top hypothesis and cause
large outliers. In simpler environments like office, image
extraction is more robust. Thus errors do not increase as
much when only the top hypothesis is used.

9.4 Map Overall Shapes

The reconstructed maps from data gathered by novice users
and their respective ground truth floor plans are shown in
Figure 24. We can see they match the ground truth quite
well. To quantify how accurate the shape of a reconstructed
map is, we overlay it onto its ground truth to achieve the
maximum overlap by rotation and translation. We define
precision, recall and F-score to measure the degree of over-
lap:

P =
Sre ∩ Sgt
Sre

, R =
Sre ∩ Sgt
Sgt

, F =
2P ·R
P +R

, (14)
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Fig. 21. Final landmark orientation and location errors for untrained, novice and dedicated users. (a)(b)(e)(f) for untrained users before (1st column)
and after (2nd column) trajectory cleaning (TC). (c)(g) for novice users, and (d)(h) for dedicated users.
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Fig. 22. Example for multi-hypothesis measurement: using all hypothe-
ses improves the accuracy after landmark’s update.
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Fig. 23. Landmark orientation and location errors using top hypothesis
only.

where Sre denotes the size of reconstructed map, Sgt that of
its ground truth, and Sre ∩ Sgt that of the overlapping area.

Table 3 shows the precision, recall and F-score of the
three maps. We observe that Knitter achieves high precisions
around 85 ∼ 90% for all three buildings, high recalls for lab
(around 85%), and high F-scores for office and lab around
86%. Recalls are lower than precision (especially the mall)
due to small amounts of trajectories, large open regions and
unreachable room spaces when walking. We also evaluate
the overall shape of maps using data collected by ourselves,
and results are similar with slight increase of 3 ∼ 5% in
precision, recall and F-score. These prove that novice users’
data can construct maps comparable with dedicated users,
and approximate the shapes of ground truths very well.

TABLE 3
Shape evaluation of floor plans

Precision Recall F-score
Office building 89.29% 82.62% 85.83%
Lab building 87.73% 85.51% 86.61%

Shopping mall 84.21% 74.30% 78.95%

9.5 Comparison with Jigsaw

We compare the reconstructed map of Knitter to that of
Jigsaw [8], a latest work. Knitter explores a lightweight lo-
calization method that requires only one image; it combines
multiple sensing modalities to recognize landmarks, and
uses Bayesian Networks to incrementally update the map
upon each data sample.

In contrast, we find several limitations of Jigsaw. 1)
Jigsaw uses Structure from Motion [28], a compute-intensive
technique that requires over 100 photos per landmark, thus
taking long time and intensive human efforts to collect. 2)
It assumes landmarks with distinctive appearances to con-
struct the “point cloud”, which is not applicable in visually
homogeneous environments such as office and lab, and it
assumes perfect landmark recognition (by image match-
ing [20] or humans). 3) Its maximum likelihood optimization
requires many constraints from large amounts of data.

We compare the reconstruction performance of Knitter
and Jigsaw for the mall only (because SfM [28] does not
work well in office/lab). Since crowdsensing may take long
time (weeks or longer) and high expenses to collect large
quantities of data, we gather the data by ourselves. It takes
us about 21 man-hours to collect the needed data (over
2, 400 images, about 200 hallway and room traces). Then
we manually associate images to respective landmarks to
ensure perfect landmark recognition. Table 4 summarizes
the comparison results.

We observe that Knitter achieves the same orientation
accuracy (4◦ at 80-percentile) as Jigsaw, and slightly higher
location errors (3 ∼ 4m vs. 2m at 80-percentile). Such errors
do not constitute too big a challenge for users because: 1) in
large environments where landmarks are sparse (e.g., stores
in malls spaced much more than a few meters), it’s not a
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Fig. 24. Reconstructed and ground truth floor plans for the office, lab, and mall.

TABLE 4
Comparison with Jigsaw

Jigsaw Knitter
Effectiveness Only mall Office, lab, mall

#Images/landmark 150 1 ∼ 5
Data collection 21 man-hours 1 man-hour

Orientation accuracy 4◦ 4◦

Location accuracy 2m 3 ∼ 4m
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Fig. 25. Relative localization errors
using reconstructed maps.
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Fig. 26. Landmark errors vs. num-
ber of particles.

problem; 2) in office environments, it guides the user to
the proper area, a quick looking around can then locate the
door. In addition, Knitter requires about only 1 man-hour to
collect 5 loops’ data, only 5% that of Jigsaw’s 21 man-hour
efforts. The batch optimization in Jigsaw is also susceptible
to outliers. We find sometimes a single large outlier can
skew landmark locations by over 10m.

The comparison shows advantages of Knitter:
lightweight algorithms speeding up data collection by
more than 20×; trajectory cleaning ensuring data quality
from novice users; a multi-hypothesis, incremental map
fusion scheme for accurate map updates and tolerance of
residual errors; reliable landmark recognition based on
multi-modality sensing.

9.6 Miscellaneous

Reconstructed Maps for Localization. One major usage for
reconstructed floor plans is to pinpoint user locations on
maps. We select 80 random test locations in each environ-
ment; users stand at each test location and take a photo
of the closest landmark. During localization process, first
we collect the inertial data, WiFi signatures and images
to recognize the landmark, then employ our single image
localization algorithm (Section 3) to compute the user’s
relative location to the landmark.

Figure 25 shows CDFs of the relative position errors
(distance between the computed and true relative locations
to the correct landmark) in all three environments. For prac-
tical purposes such as navigation, accurate relative locations
to a correct landmark is sufficient to produce proper routes
on the map. We observe that the 90-percentile position errors
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turns.
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Fig. 28. Tracking errors during
navigation.

are around 2.0m, 2.8m and 2.3m in office, lab and mall,
respectively. The large errors in lab are due to landmark
recognition mistakes, since its landmarks (e.g., doors) have
similar appearances and are close to each other. The mall
has almost perfect recognition but larger sizes, thus inter-
mediate errors. Although not yet a full-fledged solution, the
above demonstrates the potential of reconstructed maps for
localization.

Topology structure. In order to provide the optimal
route for indoor navigation, we automatically extract topol-
ogy structures for all three reconstructed floor plans. Com-
pared with the ground truth, the number of extracted turns
and edges are 100% correct, and Figure 27 shows that the
80-percentile location errors of road turns in three environ-
ments are 2.2m, 3.0m and 3.6m, respectively, similar to our
reconstructed landmarks.

Navigation. We compare with the conventional leader-
follower navigation method FollowMe [22], and install its
Android application [25] on Sumsang Galaxy S4. Since it has
several limitations on starting position and building struc-
ture (elaborated in Section 8.1), we conduct experiments
only in the office building, and collect reference/test traces
from the entrance to 16 landmarks. In order to measure
the tracking accuracy, we invite another person to take
videos behind the walking user for the ground truth location
over time, and record time stamps when passing check
points. Figure 28 illustrates the tracking errors between
FollowMe navigation method and ours. We observe that
the 90-percentile tracking error with Knitter is 2.3m, smaller
than that of 4m error with FollowMe. The large errors in
FollowMe are caused mainly by unobservable geomagnetic
anomalies from server rooms or outside windows.

Number of Particles. More particles in general improve
the mapping accuracy but increase computing time. Fig-
ure 26 shows that the average errors decrease slightly (from
1.2m/3◦ to 1.1m/2◦) and become stable after 1000 particles.
4 The computation time increases from 54s with 100 particles

4. The dip in orientation error around 300 ∼ 500 particles is due to
some outliers temporarily filtered out. They are permanently filtered
out beyond 900 particles.
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to 292 seconds with 1000 particles for 5 loops update, still
very small. This shows even with small number of particles
we can achieve accurate results.

Time overhead. The time overhead in our system in-
cludes walking time, photo-taking time, and computation
time. The walking time depends on the size of surveying
areas, and for a typical 140 × 50m2 shopping mall, users
take ∼ 10min for a loop path; photo-taking time and
computation time are related to the number of landmarks,
and it takes around 10s to capture one image, extract its
information and update the landmark. Thus for each of the
three buildings in our experiments, data collection for five
loops can finish in around one hour. We will investigate a
more intelligent path planning algorithm in future work.

Energy. We use Monsoon Power Monitor [29] and find
that one-time image-taking plus WiFi-scan cost around 25
Joules. For a typical indoor environment with 20 landmarks,
the 20 images and 20 WiFi scans at photo locations cost 500
Joules. Transmitting all data (∼ 5MB for 800× 600 images,
inertial and WiFi data) costs about 5 Joules on WiFi [30].
Compared to the battery capacity of 21k Joules [31], the
data sensing and transmission consume about 2.4% of the
phone’s battery.

10 DISCUSSION

Incentives for Novice Users. Most existing study [7], [8],
[32] reconstruct indoor floor plans via mobile crowdsensing,
which assumes casual users who do not pay much attention
to data collection. Thus low quality data or even errors are
common and sifting noises is difficult. We conjecture that
with proper amounts and types of incentive, users willing
to focus on data collection for short time (e.g., $20 cash
reward for 10 minutes) can be recruited. Such novice users
can follow simple guidelines and collect data in desired
forms and quantities (e.g., clear landmark images along a
loop path). Such a model of task completion using effective
rewards has already been validated in the industry [33]–
[35], thus we argue such a paradigm for loop paths with
clear images is feasible and practical.

Robust Landmark Recognition. We combine image,
WiFi and user pose for landmark recognition. Many fac-
tors can affect the image matching accuracy: resolution,
orientation, distance, illumination (e.g., noon sunlight vs.
night lights), richness in features (e.g., office vs. mall) and
occlusions (e.g., objects or people). Thus we combine WiFi
signals and user pose, essentially the measurement location
and orientation, for robust recognition. In reality we find
when landmarks are too close (e.g., two adjacent office
doors), WiFi and user pose cannot tell them apart. We
plan to extend image extraction method to detect multiple
landmarks in single image, and leverage magnetic map [36]
or fine grained WiFi propagation models [37] to improve the
recognition robustness.

User interactions. In order to measure users’ distances
to landmarks, our system needs the camera’s height used
in Equation 2. We use the user’s height for approxima-
tion, e.g., set at some default value such as 1.7m. Such
approximation still provides accurate distance estimation,
e.g., for a user taking photos at 5m distance and the camera’s
height at 1.6m, the corresponding distance estimation error
is only 0.3m. The user can easily find a landmark just 0.3m
away from its true location. There are several predefined

thresholds for user inputs in our trajectory calibration and
landmark recognition methods, which are related to the
building type and layout, e.g., malls/labs/offices and the
approximate distance between adjacent landmarks. These
thresholds can be obtained initially (e.g., one time by actual
measurements or vision techniques such as image classifica-
tion and object detection) and then refined continuously.

11 RELATED WORK

Indoor Floor Plans. Indoor floor maps is a relatively new
problem in the mobile community. CrowdInside [7] uses
inertial data to construct user trajectories to approximate
shapes of accessible areas. Jigsaw [8] combines vision and
mobile techniques to generate accurate floor plans using
many images. Walkie-Markie [5] identifies when the WiFi
signal strength reverses the trend and uses them as cali-
bration points to construct hallways. Jiang et. al. [3] detect
room and hallway adjacency from WiFi signature similarity,
and combine user trajectories to construct hallways. MapGe-
nie [4] leverages foot-mounted IMU (Inertail Measurement
Unit) for more accurate user trajectories. Shin et. al. [6] use
mobile trajectories and WiFi signatures in a Bayesian setting
for hallway skeletons. Sankar et. al. [38] combines smart-
phone inertial/video data and manual user recognition to
recover room features and model the indoor scene of Man-
hattan World (i.e., orthogonal walls). IndoorCrowd2D [32]
generates panoramic indoor views of Manhattan hallway
structures by stitching images together. CrowdMap [39] uses
the geometry features such as corners in such panoramic
views to create rooms for floor maps.

Compared to them, our distinction is fast, accurate,
resilient map construction with a single random user.
We produce maps with qualities comparable to the latest
method [8], and more than 20× speed up. We also propose
incremental map construction utilizing multi-hypothesis in-
puts and robust landmark recognition, which are suitable
for sparse data.

Vision-based 3D Reconstruction. Structure from Mo-
tion [28] is a famous technique for scene reconstruction. It
creates a “point cloud” form of object exterior using large
numbers of images from different viewpoints. iMoon [40]
and OPS [9] use it for navigation and object positioning.
Tango phones from Google [41] use depth cameras to build
3D scenes.

Indoor floor plan is essentially a 2D modeling problem
that requires reasonably accurate sizes, shapes of major
landmarks, but not uniform details everywhere, which is the
strength of 3D reconstruction. Compared to them, our focus
is not on vision. We carefully leverage suitable techniques
for a novel localization method using a single image, thus
deriving landmark geometry attributes. We leverage much
lighter weight mobile techniques to process inertial and
WiFi data for reasonably accurate floor maps with much
less data and complexity.

SLAM (Simultaneous Localization And Mapping) esti-
mates the poses (usually 2D locations and orientations) of
the robot and locations of landmarks (mostly feature points
on physical objects) in unknown environments. Abundant
academic work [42], [43] have leveraged high quality or
special sensors such as odometers, depth/stereo cameras,
and laser rangers for precise robot motion and landmark
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measurements. Some recent work [44], [45] have used sen-
sors in commodity mobile devices but mostly focus on
localization, not map construction.

Compared to them, we must extract information and cre-
ate complete maps reliably despite low quality and quantity
data from common users. The precision and variation of
sensor data from commodity mobile devices are far worse
than those from special hardware in robotics. We also need
to filter, fuse fragmented and inconsistent data from random
users.

12 CONCLUSION

We propose Knitter, which constructs accurate indoor floor
plans requiring only one hour’s data collection by a single
random user. Compared to the latest work, Knitter creates
maps of similar quality with more than 20× speed up,
and such maps can be used to provide turn-by-turn in-
door navigation instructions. Its speed and resilience come
from novel techniques including single image localization,
multi-hypothesis input, trajectory calibration and cleaning
methods, and fusion of heterogeneous data’s results using
an incremental map construction framework that updates
map layouts based on measurement evidences. Extensive
experiments in three different large indoor environments
for 30+ users show that a novice user with a few minutes’
training can produce complete and accurate floor plans
comparable with dedicated users, while incurring only one
man-hour’s data-gathering efforts.

In the future, we plan to investigate methods to lever-
age magnetic signatures and WiFi prorogation models to
improve landmark recognition accuracy, and filter outlier
data at finer granularity to preserve individual images and
trajectory fragments of high quality.
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