Poster: Pose-assisted Active Visual Recognition in
Mobile Augmented Reality

Bing Zhou!, Sinem Guven?, Shu Tao?, Fan Ye!

! Stony Brook University, 2 IBM Thomas J. Watson Research Center
{bing.zhou,fan.ye}@stonybrook.edu,{sguven,shutao}@us.ibm.com

ABSTRACT

While existing visual recognition approaches, which rely
on 2D images to train their underlying models, work well
for object classification, recognizing the changing state of a
3D object requires addressing several additional challenges.
This paper proposes an active visual recognition approach
to this problem, leveraging camera pose data available on
mobile devices. With this approach, the state of a 3D object,
which captures its appearance changes, can be recognized
in real time. Our novel approach selects informative video
frames filtered by 6-DOF camera poses to train a deep learn-
ing model to recognize object state. We validate our approach
through a prototype for Augmented Reality-assisted hard-
ware maintenance.

CCS CONCEPTS

» Human-centered computing — Mixed / augmented
reality; - Computing methodologies — Activity recog-
nition and understanding;

KEYWORDS

active visual recognition; augmented reality; mobile devices

ACM Reference Format:

Bing Zhou!, Sinem Guven?, Shu Tao?, Fan Yel. 2018. Poster: Pose-
assisted Active Visual Recognition in Mobile Augmented Reality.
In The 24th Annual International Conference on Mobile Computing
and Networking (MobiCom ’18), October 29-November 2, 2018, New
Delhi, India. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3241539.3267771

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

MobiCom ’18, October 29-November 2, 2018, New Delhi, India

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5903-0/18/10.
https://doi.org/10.1145/3241539.3267771

1 INTRODUCTION

Augmented Reality (AR) has become more prevalent in re-
cent years, especially with the emergence of AR-enabled
mobile phones. However, there are still limitations in exist-
ing technologies that prevent wider adoption of AR, one of
which is lack of fine-grained visual recognition. Take techni-
cal support, a well-recognized use case for AR, as an example:
AR is transforming traditional hardware repair guidance into
a more intuitive and engaging experience by superimposing
step-by-step 3D animated instructions on the hardware [2].
Nevertheless, existing solutions require the user to analyze
the current scene, and to manually choose an applicable set
of instructions to view through AR. This is not only cumber-
some from user experience point of view, but also means that
the user needs to have sufficient knowledge about the hard-
ware being repaired to select the right AR content, thereby
limiting the value of AR in this use case. To realize the true
value of AR-assisted repair, the system needs to automati-
cally understand the state of hardware being repaired, and
present corresponding instructions to the user.

Figure 1 shows two example steps of replacing the CPU
module on a server. In the proposed scenario, each state of the
server will be automatically recognized, then the correspond-
ing next-step instructions will be automatically presented to
the user. Implementing such state recognition poses several
new challenges, compared to traditional visual recognition
methods [1]: i) 3D object recognition requires complete vi-
sual perception, which usually cannot be captured by a single
camera shot. For instance, in Figure 1, multiple images from
different viewing angles are needed to cover all components
(e.g., screws, manifold, heat sink, etc.). ii) Some states of an
object may only be recognizable from few viewing angles, and
conventional algorithms cannot easily recognize that, in order
to differentiate these states. For example, the server in Figure 1
cannot be recognized as in the state of ‘Heat Sink Removed’,
unless it is viewed at an angle like that of the second image.
iii) The solution must be designed to work with the constraints
of computation and power resources on mobile devices.

A unique advantage of running AR on mobile devices is
the ability to keep track of the 6-DOF pose (3D position and
orientation) of a device, which can be derived from camera

https://doi.org/10.1145/3241539.3267771
https://doi.org/10.1145/3241539.3267771
https://doi.org/10.1145/3241539.3267771

State 3: Rail Removed. ®
Next: Unfasten manifold clamps: ﬁ’" osen

Figure 1: Example states of a server under repair.

and inertial sensor data, offers opportunities for fine-grained
active visual recognition. Specifically, we propose to leverage
device pose data, in addition to camera-captured images, to
accurately identify the state of an object, and use that to
enhance AR experiences. Our contributions include:

e A video frame filtering mechanism that identifies the
most informative frames using camera pose, enabling
the “scan and recognize” capability.

o A deep learning pipeline that runs on mobile devices
and aggregates visual information from multiple video
frames for robust object state recognition.

e A prototype running on mobile devices to demon-
strate our approach’s practicality when applied to AR-
assisted hardware maintenance scenarios.

2 SYSTEM DESIGN

Our system works in three phases: pose-controlled video
frame filtering, Convolutional Neural Network (CNN) based
image feature extraction, and visual information aggregation,
as shown in Figure 2.

2.1 Pose-controlled Video Frame Filtering

In this phase, the most informative video frames at certain
poses are selected, while mobile device is scanning the object.
It is critical for both collecting data to train the visual recogni-
tion model, and for applying the trained model to infer object
state. Our design works as per the following three steps:

Initial Pose Calibration. We first map both the object
and mobile device into the same coordinate system, so that
AR experiences can be launched consistently, with respect
to the object and the relative camera pose. To achieve this,
the user simply needs to point the mobile camera at a fixed
location on the object (e.g., a barcode marker on the machine),
and set that as the origin of the tracking coordinates.

Pose Clustering and Frame Labeling. We next deter-
mine camera poses from which the captured video frames
are the most informative and can best distinguish different
states of the object. We first identify the “point of interest”
(POI) on the object (indicated as yellow marks in Figure 1).
POIs are sub-areas of an object where the appearance is sub-
ject to change (e.g., a removable portion of the machine) !.
In our current design, we assume that human experts will mark these

POIs. As future work, we are developing mechanisms to extract the POIs
automatically from video data.

Since a POI may only be observable from a certain angle, we
need to determine the camera poses that can capture usable
images to recognize the appearance changes of each POI
(hence the change of object state). When collecting train-
ing data, the user shall scan each POI thoroughly to gather
images from different angles. Meanwhile, the camera pose
data corresponding to the images are also recorded. When
training the model, we first run a clustering algorithm on
camera pose data to determine the ‘pose groups’, each of
which corresponds to a POL As a result, we can label im-
ages with pose groups to train the visual recognition model.
And during inference, images fed from camera can also be
automatically associated to POI based on the corresponding
camera pose data.

Video Frame Filtering. Given the mechanism above,
video frames can be labelled by POI. When training the
model, we use all captured frames. When inferring object
state, we need to select the best quality video frames as the
user scans the object with camera. For that purpose, our
system visually guides the user to point the camera to POIs,
until the scan results in sufficient video capture of these areas.
To select the best quality frames, we use inertial sensor data
(accelerometer and gyroscope) to determine the most “stable”
video frames for each POI when the camera is scanning. The
video frames captured when the mobile device had minimum
acceleration and rotation are selected as input.

2.2 CNN based Image Feature Extraction

We tune a pre-trained ResNet50 [1] as our base model for
image feature extraction. We remove the last fully connected
layer of the model, thus getting a 2048-D feature vector for
each input image. The inference only runs whenever there is
video frame update for a POL The image features extracted
for other unchanged POlIs are reused, if no video frame up-
date is available. This significantly reduces the computation
overhead and battery consumption on mobile devices.

2.3 Visual Information Aggregation

We aggregate all extracted image features to feed into a fully-
connected deep neural network, using an approach similar to
MVCNN [4], to classify them into different object states. All
image features are concatenated as input for the aggregation
model. This model inference runs in real time, whenever
there is any update from the input features.

3 IMPLEMENTATION

We implemented the proposed system in two parts: a Model
Training program and a Mobile App.

Model Training. The training program tunes the ResNet50
network and trains the customized aggregation model, with
filtered video frames, device pose, and corresponding object

Pose-controlled Video Frame Filtering
-

:’ __________ 'I Video
| : Frame 1
1

1
| Video |1
! Frames | Video
I ! Video Frame ' Frame 2
1 . .
I Pose Data X Filtering .
. :
[I)
: : Video
: Xy Frame K
A .

\

Figure 2: Video frames are filtered by pose information, and fed into a fine-tuned ResNet50 for feature extraction.
A neural network is designed for aggregating visual information from filtered video frames for final classification.

states as input data. To collect training data, we scan the ob-
ject at each state for approximately 2mins. After the model
training, we convert the models to Core ML [3] format to
run on iOS platform.

Mobile App. We developed an i0S-based mobile appli-
cation with four modules: AR tracking, frame filtering, model

CNN based Image Feature Extraction

Visual Information Aggregation

Sco-o2 | [
oD zo— €
O/{gip, S \O O (State 1
S ResNet50 © =
s @ Fully Connected | State 2
8 —>. State 3
" ResNet50 o
SanB |
8 - »C \ State N
X >
S ResNet50 © ©

inference, and rendering. We use ARKit [3] for collecting device

pose data and for object tracking when rendering AR expe-
riences. The frame filtering component selects appropriate
ones as training data (in training model) or as input data (in
inference mode). We run model inference using the Core ML
framework, which is optimized for on-device performance by
minimizing memory footprint and power consumption. 3D
animations are rendered in the AR scene using SceneKit [3].
For our evaluation, we run this app on an iPad with dual
core 1.8GHz A9 processor and 2GB memory.

4 EVALUATION

With the setup above, we collected about 15000 filtered video
frames that represent 8 different states of a server.

State Recognition Accuracy. For each of the 8 states, we
use our mobile app to scan the server and infer the current
state. We repeat the recognition test 50 times for each state.
As shown in Table 1, the recognition accuracy is 100% for all
states except state 3 and 4, where the accuracy is 96% and
88%, respectively. These two states are easier to be confused
because the visual difference between them are small: only
two small screws are removed from state 3 to state 4. We can
further improve the accuracy for these states, by instructing
user to slow down camera movement or to adjust camera
pose. Nevertheless, the overall results clearly demonstrated
that our proposed solution is robust enough for practical use.

Resource Overhead. We measure the overhead of our
active visual recognition mechanism on the mobile device,
in CPU and memory usage, and in GPU time per frame. We
compare these resource usage metrics when the mobile app is
running in two modes: AR tracking only and AR with visual

State | 1-2 3 4 5-8

1-2 100% | 0% 0% 0%

3 0% 96% | 4% 0%

4 0% 12% | 88% 0%
5-8 0% 0% 0% | 100%

Table 1: Confusion matrix of results in percentage.

Mode CPU | Memory | GPU Frame Time
AR Only 26% | 95.5MB 1.3ms
AR + Visual | 38% | 128.4MB 11.4ms

Table 2: Resource consumption and frame time.

recognition. Table 2 shows the average values over running
both modes for a duration of 3 minutes. The visual recogni-
tion increases the CPU usage by 12%, and consumes about
33MB more memory. The GPU time per frame is increased
by about 10ms due to the inference of neural networks. With
these overheads, our application can easily achieve 60 fps.

5 CONCLUSION

In this paper, we propose an approach that combines both vi-
sual and camera pose data to recognize the changing state of
3D objects. We develop a prototype system with an iOS-based
mobile app, demonstrate the practicality of our approach in
AR-assisted hardware maintenance.

REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 770-778.

[2] Steven J Henderson and Steven K Feiner. 2007. Augmented reality for
maintenance and repair (armar). Technical Report. Columbia Univ New
York Dept of Computer Science.

[3] Apple Inc. 2018. Apple Developer Documentation. https://developer.
apple.com/documentation.

[4] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-
Miller. 2015. Multi-view convolutional neural networks for 3d shape
recognition. In Proceedings of the IEEE international conference on com-
puter vision. 945-953.

https://developer.apple.com/documentation
https://developer.apple.com/documentation

	Abstract
	1 Introduction
	2 System Design
	2.1 Pose-controlled Video Frame Filtering
	2.2 CNN based Image Feature Extraction
	2.3 Visual Information Aggregation

	3 Implementation
	4 Evaluation
	5 Conclusion
	References

